人教版七年级上册数学知识点总结归纳Word文档下载推荐.docx
《人教版七年级上册数学知识点总结归纳Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《人教版七年级上册数学知识点总结归纳Word文档下载推荐.docx(29页珍藏版)》请在冰豆网上搜索。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数
引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8⋯也是偶数,-1,-3,-5
⋯也是奇数。
2.有理数的分类
⑴按有理数的意义分类
⑵按正、负来分
正整数
整数
正有理数
负整数
正分数
有理数
(0不能忽视)
分数
负有理数
负分数
总结:
①正整数、0统称为非负整数(也叫自然数)
②负整数、0统称为非正整数
③正有理数、0统称为非负有理数
④负有理数、0统称为非正有理数
3.数轴⒈数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。
⑴数轴是一条向两端无限延伸的直线;
⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;
⑶同一数轴上的单位长度要统一;
⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,
的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数
数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)
负有理数可用原点左边,也就是说,有理数与
3.利用数轴表示两数大小
⑴在数轴上数的大小比较,右边的数总比左边的数大;
⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数
⑴最小的自然数是0,无最大的自然数;
⑵最小的正整数是1,无最大的正整数;
⑶最大的负整数是-1,无最小的负整数
5.a可以表示什么数
⑴a>
0表示a是正数;
反之,a是正数,则a>
0;
⑵a<
0表示a是负数;
反之,a是负数,则a<
⑶a=0表示a是0;
反之,a是0,,则a=0
4.相反数
⒈相反数
只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:
⑴相反数是成对出现的;
⑵相反数只有符号不同,若一个为正,则另一个为负;
⑶0的相反数是它本身;
相反数为本身的数是0。
2.相反数的性质与判定⑴任何数都有相反数,且只有一个;
⑵0的相反数是0;
⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0
3.相反数的几何意义
在数轴上与原点距离相等的两点表示的两个数,是互为相反数;
互为相反数的两个数,在数轴上的对
应点(0除外)在原点两旁,并且与原点的距离相等。
0的相反数对应原点;
原点表示0的相反数。
说明:
在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法
⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:
5的相反数是-5);
⑵求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;
5a+b的相反数是-(5a+b)。
化简得-5a-b);
⑶求前面带“-”的单个数,也应先用括号括起来再添“
简得5)
-”,然后化简
(如:
-5
的相反数是
-(-5),化
5.相反数的表示方法
⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。
当a>
0时,-a<
0(正数的相反数是负数)
当a<
0时,-a>
0(负数的相反数是正数)
当a=0时,-a=0,(0的相反数是0)
5.绝对值
⒈绝对值的几何定义
一般地,数轴上表示
数a的点与原点的距离叫做
a的绝对值,记作
|a|
。
2.绝对值的代数定义
⑴一个正数的绝对值是它本身;
⑵一个负数的绝对值是它的相反数;
⑶0的绝对值是
0.
可用字母表示为:
①如果a>
0,那么|a|=a;
②如果a<
0,那么|a|=-a;
③如果a=0,那么|a|=0。
可归纳为①:
a≥0,<
═>
|a|=a(非负数的绝对值等于本身;
绝对值等于本身的数是非负数。
②a≤0,<
═>
|a|=-a(非正数的绝对值等于其相反数;
绝对值等于其相反数的数是非正数。
)
经典考题
如数轴所示,化简下列各数
|a|,|b|,|c|,|a-b|,|a-c|,|b+c|
解:
由题知道,因为a>
0,b<
0,c<
0,a-b>
0,a-c>
0,b+c<
0,
所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c
3.绝对值的性质
任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。
所以,
a取任何有理数,都有|a|
≥0。
即⑴0的绝对值是
绝对值是
0的数是
0.即:
a=0<
═>
|a|=0;
⑵一个数的绝对值是非负数,
绝对值最小的数是0.即:
|a|
≥0;
⑶任何数的绝对值都不小于原数。
即:
≥a;
⑷绝对值是相同正数的数有两个,它们互为相反数。
若
|x|=a(a>
0),则x=±
a;
⑸互为相反数的两数的绝对值相等。
|-a|=|a|或若a+b=0,则|a|=|b|;
⑹绝对值相等的两数相等或互为相反数。
|a|=|b|
,则a=b或a=-b;
⑺若几个数的绝对值的和等于
0,则这几个数就同时为
0。
即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:
若几个非负数的和为
0,则有且只有这几个非负数同时为
0)
已知|a+3|+|2b-2|+|c-1|=0,
求a+b+c的值
|a+3|+|2b-2|+|c-1|=0
因为|a+3|
≥0,
|2b-2|
,|c-1|
≥0,且
≥0
所以|a+3|=0,|2b-2|=0,|c-1|=0
即a=-3,b=1,c=1
所以a+b+c=-3+1+1=-1
3.有理数大小的比较
⑴利用数轴比较两个数的大小:
数轴上的两个数相比较,左边的总比右边的小;
⑵利用绝对值比较两个负数的大小:
两个负数比较大小,绝对值大的反而小;
异号两数比较大小,正数大于负数。
5.绝对值的化简
①当a≥0时,|a|=a;
②当a≤0时,|a|=-a
6.已知一个数的绝对值,求这个数
一个数a的绝对值就是数轴上表示数
两个,它们互为相反数,绝对值为
a的点到原点的距离,一般地,绝对值为同一个正数的有理数有
0的数是0,没有绝对值为负数的数。
如:
|a|=5,则a=土5
1.3有理数的加减法
1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
⑶互为相反数的两数相加,和为零;
⑷一个数与零相加,仍得这个数。
2.有理数加法的运算律
⑴加法交换律:
a+b=b+a
⑵加法结合律:
(a+b)+c=a+(b+c)
在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:
①互为相反数的两个数先相加——“相反数结合法”;
②符号相同的两个数先相加——“同号结合法”;
③分母相同的数先相加——“同分母结合法”;
④几个数相加得到整数,先相加——“凑整法”;
⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质
一个数加正数后的和比原数大;
加负数后的和比原数小;
加⑴当b>
0时,a+b>
a⑵当b<
0时,a+b<
a
0后的和等于原数。
⑶当b=0时,a+b=a
4.有理数减法法则
减去一个数,等于加上这个数的相反数。
用字母表示为:
a-b=a+(-b)
5.有理数加减法统一成加法的意义
在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
(-8)+(-7)+(-6)+(+5)=-8-7-6+5.
和式的读法:
①按这个式子表示的意义读作“负8、负7、负6、正5的和”
②按运算意义读作“负8减7减6加5”
6.有理数加减混合运算中运用结合律时的一些技巧:
Ⅰ.把符号相同的加数相结合(同号结合法)
(-33)-(-18)+(-15)-(+1)+(+23)
原式=-33+(+18)+(-15)+(-1)+(+23)
(将减法转换成加法)
=-33+18-15-1+23
(省略加号和括号)
=(-33-15-1)+(18+23)
(把符号相同的加数相结合)
=-49+41
(运用加法法则一进行运算)
=-8
(运用加法法则二进行运算)
Ⅱ.把和为整数的加数相结合
(凑整法)
(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)
原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)
=6.6-5.2+3.8-2.6-4.8
=(6.6-2.6)+(-5.2-4.8)+3.8
(把和为整数的加数相结合)
=4-10+3.8
(运用加法法则进行运算)
=7.8-10
(把符号相同的加数相结合,并进行运算)
=-2.2
(得出结论)
Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)
-3-1+3-2+1-7
524528
原式=(-3-
2)+(-
1+1)+(+
3-
7)
5
2
4
8
1
=-1+0-
=-1
Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)
(+0.125)-(-3
3)+(-3
1)-(-10
2)-(+1.25)
3
原式=(+1)+(+3
1)+(+102)+(-1
1)
=+3
-3
+10
-1
=(33-11)+(
1-31)+10
=21-3+102
=-3+131
6
=10
Ⅴ.把带分数拆分后再结合(先拆分后结合)
-31
+106-12
1+47
11
22
15
原式=(-3+10-12+4)+(-
1+7)+(
6-
=-1+4+11
1522
815
=-1++
3030
-7
30
Ⅵ.分组结合
2-3-4+5+6-7-8+9⋯+66-67-68+69
原式=(2-3-4+5)+(6-7-8+9)+
⋯+(66-67-68+69)
=0
Ⅶ.先拆项后结合
(1+3+5+7⋯+99)-(2+4+6+8⋯+100)
1.4有理数的乘除法
1.有理数的乘法法则
法则一:
两数相乘,同号得正,异号得负,并把绝对值相乘;
(“同号得正,异号得负”专指“两数相乘”
的情况,如果因数超过两个,就必须运用法则三)
法则二:
任何数同0相乘,都得0;
法则三:
几个不是0的数相乘,负因数的个数是偶数时,积是正数;
负因数的个数是奇数时,积是负数;
法则四:
几个数相乘,如果其中有因数为0,则积等于0.
2.倒数
乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·
1=1(a≠0),就是
说a和1互为倒数,即a是1的倒数,1
aaa
是a的倒数。
①0没有倒数;
②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;
求带分数的倒数时,先把
带分数化为假分数,再把分子、分母颠倒位置;
③正数的倒数是正数,负数的倒数是负数。
(求一个数的倒数,不改变这个数的性质);
④倒数等于它本身的数是1或-1,不包括0。
3.有理数的乘法运算律
⑴乘法交换律:
一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
即ab=ba
⑵乘法结合律:
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
即(ab)c=a(bc).
⑶乘法分配律:
一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。
即a(b+c)=ab+ac
4.有理数的除法法则
(1)除以一个不等0的数,等于乘以这个数的倒数。
(2)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0
5.有理数的乘除混合运算
(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
1.5有理数的乘方
1.乘方的概念
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫做底数,n叫做指数。
2.乘方的性质
(1)负数的奇次幂是负数,负数的偶次幂的正数。
(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
3.有理数的混合运算
做有理数的混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
4.科学记数法
把一个大于10的数表示成a10n的形式(其中1a10,n是正整数),这种记数法是科学记数法。
第二章整式的加减
2.1整式
代数式:
用基本运算符号把数和字母连接而成的式子叫做代数式,一个字母也是代数式。
如n,-1,2n+500,abc。
单独的一个数或
单项式:
表示数与字母的乘积的代数式叫单项式。
单独的一个数或一个字母也是代数式。
单项式的系数:
单项式中的数字因数
单项式的次数:
一个单项式中,所有字母的指数和
多项式:
几个单项式的和叫做多项式。
每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
常数项的次数为0。
把一个大于10的数表示成a10n的形式(其中1a10,n是正整数),这种记数法是科学记数法