岩土工程中英文对照外文翻译文献.docx

上传人:b****1 文档编号:18385365 上传时间:2023-04-24 格式:DOCX 页数:13 大小:25.49KB
下载 相关 举报
岩土工程中英文对照外文翻译文献.docx_第1页
第1页 / 共13页
岩土工程中英文对照外文翻译文献.docx_第2页
第2页 / 共13页
岩土工程中英文对照外文翻译文献.docx_第3页
第3页 / 共13页
岩土工程中英文对照外文翻译文献.docx_第4页
第4页 / 共13页
岩土工程中英文对照外文翻译文献.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

岩土工程中英文对照外文翻译文献.docx

《岩土工程中英文对照外文翻译文献.docx》由会员分享,可在线阅读,更多相关《岩土工程中英文对照外文翻译文献.docx(13页珍藏版)》请在冰豆网上搜索。

岩土工程中英文对照外文翻译文献.docx

岩土工程中英文对照外文翻译文献

中英文对照外文翻译

(文档含英文原文和中文翻译)

 

原文:

SafetyAssuranceforChallengingGeotechnicalCivil

EngineeringConstructionsinUrbanAreas

Abstract

Safetyisthemostimportantaspectduringdesign,constructionandservicetimeofanystructure,especiallyforchallengingprojectslikehigh-risebuildingsandtunnelsinurbanareas.Ahighleveldesignconsideringthesoil-structureinteraction,basedonaqualifiedsoilinvestigationisrequiredforasafeandoptimiseddesign.Duetothecomplexityofgeotechnicalconstructionsthesafetyassuranceguaranteedbythe4-eye-principleisessential.The4-eye-principleconsistsofanindependentpeerreviewbypubliclycertifiedexpertscombinedwiththeobservationalmethod.Thepaperpresentsthefundamentalaspectsofsafetyassurancebythe4-eye-principle.Theapplicationisexplainedonseveralexamples,asdeepexcavations,complexfoundationsystemsforhigh-risebuildingsandtunnelconstructionsinurbanareas.Theexperiencesmadeintheplanning,designandconstructionphasesareexplainedandfornewinnerurbanprojectsrecommendationsaregiven.

Keywords:

NaturalAsset;FinancialValue;NeuralNetwork

1.Introduction

Asafetydesignandconstructionofchallengingprojectsinurbanareasisbasedonthefollowingmainaspects:

Qualifiedexpertsforplanning,designandconstruction;

Interactionbetweenarchitects,structuralengineersandgeotechnicalengineers;

Adequatesoilinvestigation;

DesignofdeepfoundationsystemsusingtheFiniteElement-Method(FEM)incombinationwithenhancedin-situloadtestsforcalibratingthesoilparametersusedinthenumericalsimulations;

Qualityassurancebyanindependentpeerreviewprocessandtheobservationalmethod(4-eye-principle).

Thesefactswillbeexplainedbylargeconstructionprojectswhicharelocatedindifficultsoilandgroundwaterconditions.

2.The4-Eye-Principle

Thebasisforsafetyassuranceisthe4-eye-principle.This4-eye-principleisaprocessofanindependentpeerreviewasshowninFigure1.Itconsistsof3parts.Theinvestor,theexpertsforplanninganddesignandtheconstructioncompanybelongtothefirstdivision.Planninganddesignaredoneaccordingtotherequirementsoftheinvestorandallrelevantdocumentstoobtainthebuildingpermissionareprepared.Thebuildingauthoritiesarethesecondpartandareresponsibleforthebuildingpermissionwhichisgiventotheinvestor.Thethirddivisionconsistsofthepubliclycertifiedexperts.Theyareappointedbythebuildingauthoritiesbutworkasindependentexperts.Theyareresponsibleforthetechnicalsupervisionoftheplanning,designandtheconstruction.

Inordertoachievethelicenseasapubliclycertifiedexpertforgeotechnicalengineeringbythebuildingauthoritiesintensivestudiesofgeotechnicalengineeringinuniversityandlargeexperiencesingeotechnicalengineeringwithspecialknowledgeaboutthesoil-structureinteractionhavetobeproven.

Theindependentpeerreviewbypubliclycertifiedexpertsforgeotechnicalengineeringmakessurethatallinformationincludingtheresultsofthesoilinvestigationconsistingoflaborfieldtestsandtheboundaryconditionsdefinedforthegeotechnicaldesignarecompleteandcorrect.

Inthecaseofadefectorcollapsethepubliclycertifiedexpertforgeotechnicalengineeringcanbeinvolvedasanindependentexperttofindoutthereasonsforthedefectordamageandtodevelopaconceptforstabilizationandreconstruction[1].

Foralldifficultprojectsanindependentpeerreviewisessentialforthesuccessfulrealizationoftheproject.

3.ObservationalMethod

Theobservationalmethodispracticaltoprojectswithdifficultboundaryconditionsforverificationofthedesignduringtheconstructiontimeand,ifnecessary,duringservicetime.ForexampleintheEuropeanStandardEurocode7(EC7)theeffectandtheboundaryconditionsoftheobservationalmethodaredefined.

Theapplicationoftheobservationalmethodisrecommendedforthefollowingtypesofconstructionprojects[2]:

verycomplicated/complexprojects;

projectswithadistinctivesoil-structure-interaction,e.g.mixedshallowanddeepfoundations,retainingwallsfordeepexcavations,CombinedPile-RaftFoundations(CPRFs);

projectswithahighandvariablewaterpressure;

complexinteractionsituationsconsistingofground,excavationandneighbouringbuildingsandstructures;

projectswithpore-waterpressuresreducingthestability;

projectsonslopes.

Theobservationalmethodisalwaysacombinationofthecommongeotechnicalinvestigationsbeforeandduringtheconstructionphasetogetherwiththetheoreticalmodelingandaplanofcontingencyactions(Figure2).Onlymonitoringtoensurethestabilityandtheserviceabilityofthestructureisnotsufficientand,accordingtothestandardization,notpermittedforthispurpose.Overalltheobservationalmethodisaninstitutionalizedcontrollinginstrumenttoverifythesoilandrockmechanicalmodeling[3,4].

Theidentificationofallpotentialfailuremechanismsisessentialfordefiningthemeasureconcept.Theconcepthastobedesignedinthatwaythatallthesemechanismscanbeobserved.Themeasurementsneedtobeofanadequateaccuracytoallowtheidentificationocriticaltendencies.Therequiredaccuracyaswellasthe

boundaryvaluesneedtobeidentifiedwithinthedesignphaseoftheobservationalmethod.Contingencyactionsneedstobeplannedinthedesignphaseoftheobservationalmethodanddependontheductilityofthesystems.

Theobservationalmethodmustnotbeseenasapotentialalternativeforacomprehensivesoilinvestigationcampaign.Acomprehensivesoilinvestigationcampaignisinanywayofessentialimportance.Additionallytheobservationalmethodisatoolofqualityassuranceandallowstheverificationoftheparametersandcalculationsappliedinthedesignphase.Theobservationalmethodhelpstoachieveaneconomicandsaveconstruction[5].

4.In-SituLoadTest

Onprojectandsiterelatedsoilinvestigationswithcoredrillingsandlaboratoryteststhesoilparametersaredetermined.Laboratorytestsareimportantandessentialfortheinitialdefinitionofsoilmechanicalpropertiesofthesoillayer,butusuallynotsufficientforanentireandrealisticcaptureofthecomplexconditions,causedbytheinteractionofsubsoilandconstruction[6].

Inordertoreliablydeterminetheultimatebearingcapacityofpiles,loadtestsneedtobecarriedout[7].Forpileloadtestsoftenveryhighcounterweightsorstrong

anchorsystemsarenecessary.ByusingtheOsterbergmethodhighloadscanbereachedwithoutinstallinganchorsorcounterweights.Hydraulicjacksinducethe

loadinthepileusingthepileitselfpartlyasabutment.Theresultsofthefieldtestsallowacalibrationofthenumericalsimulations.

TheprincipleschemeofpileloadtestsisshowninFigure3.

5.ExamplesforEngineeringPractice

5.1.ClassicPileFoundationforaHigh-RiseBuildinginFrankfurtClayandLimestone

InthedowntownofFrankfurtamMain,Germany,onaconstructionsiteof17,400m2thehigh-risebuildingproject“PalaisQuartier”hasbeenrealized(Figure4).

Theconstructionwasfinishedin2010.

Thecomplexconsistsofseveralstructureswithatotalof180,000m2floorspace,thereof60,000m2underground(Figure5).Theprojectincludesthehistoricbuilding“Thurn-undTaxis-Palais”whosefacadehasbeenpreserved(UnitA).Theofficebuilding(UnitB),whichisthehighestbuildingoftheprojectwitha

heightof136mhas34floorseachwithafloorspaceof1340m2.Thehotelbuilding(UnitC)hasaheightof99mwith24upperfloors.Theretailarea(UnitD)runsalongthetotallengthoftheeasternpartofthesiteandconsistsofeightupperfloorswithatotalheightof43m.

Theundergroundparkinggaragewithfivefloorsspansacrossthecompleteprojectarea.Withan8mhighfirstsublevel,partiallywithmezzaninefloor,andfourmoresub-levelsthefoundationdepthresultsto22mbelowgroundlevel.Therebyexcavationbottomisat80mabovesealevel(msl).Atotalof302foundationpiles(diameterupto1.86m,lengthupto27m)reachdowntodepthsof53.2mto70.1m.abovesealeveldependingonthestructuralrequirements.

Thepileheadofthe543retainingwallpiles(diameter1.5m,lengthupto38m)werelocatedbetween94.1mand99.6mabovesealevel,thepilebasewasbetween59.8mand73.4mabovesealeveldependingonthestructuralrequirements.Asshowninthesectionalview(Figure6),theupperpartofthepilesisintheFrankfurt

ClayandthebaseofthepilesissetintherockyFrankfurtLimestone.

Regardingthelargenumberofpilesandthehighpile

loadsapileloadtesthasbeencarriedoutforoptimizationoftheclassicpilefoundation.Osterberg-Cells(O-Cells)havebeeninstalledintwolevelsinorderto

assesstheinfluenceofpileshaftgroutingonthelimitskinfrictionofthepilesintheFrankfurtLimestone(Figure6).Thetestpilewithatotallengthof12.9mand

adiameterof1.68mconsistofthreesegmentsandhasbeeninstalledintheFrankfurtLimestonelayer31.7mbelowgroundlevel.Theupperpilesegmentabovethe

uppercelllevelandthemiddlepilesegmentbetweenthetwocelllevelscanbetestedindependently.Inthefirstphaseofthetesttheupperpartwasloadedbyusingthe

middleandthelowerpartasabutment.Alimitof24MNcouldbereached(Figure7).Theuppersegmentwasliftedabout1.5cm,thesettlementofthemiddleand

lowerpartwas1.0cm.Themobilizedshaftfrictionwasabout830kN/m2.

Subsequentlytheupperpilesegmentwasuncoupledbydischargingtheuppercelllevel.Inthesecondtestphasethemiddlepi

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1