自动控制习题16章解答16Word格式.docx

上传人:b****3 文档编号:18326440 上传时间:2022-12-15 格式:DOCX 页数:33 大小:285.16KB
下载 相关 举报
自动控制习题16章解答16Word格式.docx_第1页
第1页 / 共33页
自动控制习题16章解答16Word格式.docx_第2页
第2页 / 共33页
自动控制习题16章解答16Word格式.docx_第3页
第3页 / 共33页
自动控制习题16章解答16Word格式.docx_第4页
第4页 / 共33页
自动控制习题16章解答16Word格式.docx_第5页
第5页 / 共33页
点击查看更多>>
下载资源
资源描述

自动控制习题16章解答16Word格式.docx

《自动控制习题16章解答16Word格式.docx》由会员分享,可在线阅读,更多相关《自动控制习题16章解答16Word格式.docx(33页珍藏版)》请在冰豆网上搜索。

自动控制习题16章解答16Word格式.docx

这种控制方式是通过对扰动信号的测量,根据其变化情况产生相应控制作用,进而改变被控变量。

(a)按设定值进行控制的开环系统(b)按扰动进行控制的开环系统

图1-2开环控制系统基本结构

开环控制系统不能自动地觉察被控变量的变化情况,也不能判断操纵变量的校正作用是否适合实际需要。

3.自动控制系统主要由那些环节组成?

各部分的作用是什么?

自动控制系统主要由两大部分组成。

一部分是起控制作用的全套自动化装置,对于常规仪表来说,它包含检测元件及变送器、控制器、执行器等;

另一部分是受自动化装置控制的被控对象。

在自动控制系统中,检测元件及变送器用来感受被控变量的变化并将它转化成一种特定的信号(如气压信号或电压、电流信号等)。

控制器将检测元件及变送器送来的测量信号与工艺上需要保持的设定值信号进行比较得到偏差,根据偏差的大小及变化趋势,按预先设计好的控制规律进行运算后,将运算结果用特定的信号(如气压信号或电流信号)发送给执行器。

执行器能自动地根据控制器送来的信号值相应地改变流入(或流出)被控变量的物料量或能量,克服扰动的影响,最终实现控制要求。

4.什么是自动控制系统的过渡过程?

在阶跃扰动作用下,其过渡过程有哪些基本形式?

哪些过渡过程能基本满足控制要求?

对于任何一个控制系统,扰动作用是不可避免的客观存在。

系统受到扰动作用后,其平衡状态被破坏,被控变量就要发生波动,在自动控制作用下,经过一段时间,使被控变量回复到新的稳定状态。

把系统从一个平衡状态进入另一个平衡状态之间的过程称为系统的过渡过程。

过渡过程中被控变量的变化情况与干扰的形式有关。

在阶跃扰动作用下,其过渡过程曲线有以下几种形式。

1发散振荡过程如图1—3(a)所示。

它表明当系统受到扰动作用后,被控变量上下波动,且波动幅度逐渐增大,即被控变量偏离设定值越来越远,以至超越工艺允许范围。

2非振荡发散过程如图1—3(b)所示。

它表明当系统受到扰动作用后,被控变量在设定值的某一侧作非振荡变化,且偏离设定值越来越远,以至超越工艺允许范围。

3等幅振荡过程如图1—3(c)所示。

它表明当系统受到扰动作用后,被控变量作上下振幅恒定的振荡,即被控变量在设定值的某一范围内来回波动,而不能稳定下来。

4衰减振荡过程如图1—3(d)所示。

它表明当系统受到扰动作用后,被控变量上下波动,且波动幅度逐渐减小,经过一段时间最终能稳定下来。

5非振荡衰减过程如图l—3(e)所示。

它表明当系统受到扰动作用后,被控变量在给定值的某一侧作缓慢变化,没有上下波动,经过一段时间最终能稳定下来。

在上述五种过渡过程形式中,非振荡衰减过程和衰减振荡过程是稳定过程,能基本满足控制要求。

但由于非振荡衰减过程中被控变量达到新的稳态值的进程过于缓慢,致使被控变量长时间偏离给定值,所以一般不采用。

只有当生产工艺不允许被控变量振荡时才考虑采用这种形式的过渡过程。

5.什么是自动控制系统的方块图?

它与工艺管道及控制流程图有什么区别?

自动控制系统的方块图是由传递方块、信号先(带有箭头的线段)、综合点、分支点构成的表示控制系统组成和作用的图形。

其中每一个方块代表系统中的一个组成部分,方块内填入表示其自身特征的数学表达式;

方块间用带有箭头的线段表示相互间的关系及信号的流向。

采用方块图可直观的显示出系统中各组成部分以及它们之间的相互影响和信号的联系,以便对系统特性进行分析和研究。

而工艺管道及控制流程图则是在控制方案确定以后,根据工艺设计给出的流程图,按其流程顺序标注有相应的测量点、控制点、控制系统及自动信号、连锁保护系统的图。

在工艺管道及控制流程图上设备间的连线是工艺管线,表示物料流动的方向,与方块图中线段的含义截然不同。

6.什么是控制系统的静态与动态?

为什么说研究控制系统的动态比其静态更有意义?

在自动化领域内,把被控变量不随时间而变化的平衡状态成为控制系统的静态。

在这种状态下,自动控制系统的输入(设定值和干扰)及输出(被控变量)都保持不变,系统内各组成环节都不改变其原来的状态,它们输入、输出信号的变化率为零。

而此时生产仍在进行,物料和能量仍然有进有出。

因此,静态反映的是相对平衡状态。

系统的动态是被控变量随时间而变化的不平衡状态。

当一个原来处于相对平衡状态的系统,受到扰动作用的影响,其平衡状态受到破坏,被控变量偏离设定值。

此时,控制器就会改变原来的状态,产生相应的控制作用,改变操纵变量克服扰动的影响,力图恢复平衡状态。

从扰动发生,经过控制,直到系统重新建立平衡,在这段时间内整个系统都处在变动状态中。

在自动化工作中,了解、研究控制系统动态比其静态更为重要。

因为在生产过程中,干扰是客观存在的,是不可避免的。

在扰动引起系统变动后,就需要通过控制装置不断地施加控制作用去消除干扰作用的影响,使被控变量保持在工艺生产所规定的技术指标上,以满足过程控制的要求。

一个正常工作的自动控制系统,时时刻刻都受到扰动的频繁作用,总是处在一种频繁的、不间断的动态过程中。

因此说研究控制系统的动态比其静态更有意义。

7.什么是反馈?

什么是正反馈和负反馈?

负反馈在自动控制中有什么重要意义?

把系统(或环节)的输出信号直接或经过一些环节重新引入输入端的作法叫做反馈。

反馈信号的作用方向与设定信号相反,即偏差信号为两者之差,这种反馈叫负反馈;

反之为正反馈。

在控制系统中采用负反馈,是因为当被控变量受到扰动后,若使其升高,则反馈信号升高,经过比较,偏差信号将降低,此时控制器将发出信号而使执行器动作,施加控制作用,其作用方向与扰动方向相反,致使被控变量下降,这样就达到了控制的目的。

第二章解答p32

1.什么是被控对象特性?

什么是被控对象的数学模型?

研究被控对象特性有什么重要意义?

答:

被控对象特性是指被控对象输入与输出之间的关系。

即当被控对象的输入量发生变化时,对象的输出量是如何变化、变化的快慢程度以及最终变化的数值等。

对象的输入量有控制作用和扰动作用,输出量是被控变量。

因此,讨论对象特性就要分别讨论控制作用通过控制通道对被控变量的影响,和扰动作用通过扰动通道对被控变量的影响。

定量地表达对象输入输出关系的数学表达式,称为该对象的数学模型。

在生产过程中,存在着各种各样的被控对象。

这些对象的特性各不相同。

有的较易操作,工艺变量能够控制得比较平稳;

有的却很难操作,工艺变量容易产生大幅度波动,只要稍不谨慎就会越出工艺允许的范围,轻则影响生产,重则造成事故。

只有充分了解和熟悉对象特性,才能使工艺生产在最佳状态下运行。

因此,在控制系统设计时,首先必须充分了解被控对象的特性,掌握它们的内在规律,才能选择合适的被控变量、操纵变量,合适的测量元件和控制器,选择合理的控制器参数,设计合乎工艺要求的控制系统。

特别在设计新型的控制系统时,例如前馈控制、解耦控制、自适应控制、计算机最优控制等,更需要考虑被控对象特性。

2.简述建立对象的数学模型两种主要方法。

一是机理分析法。

机理分析法是通过对对象内部运动机理的分析,根据对象中物理或化学变化的规律(比如三大守恒定律等),在忽略一些次要因素或做出一些近似处理后推导出的对象特性方程。

通过这种方法得到的数学模型称之为机理模型,它们的表现形式往往是微分方程或代数方程。

二是实验测取法。

实验测取法是在所要研究的对象上,人为施加一定的输入作用,然后,用仪器测取并记录表征对象特性的物理量随时间变化的规律,即得到一系列实验数据或实验曲线。

然后对这些数据或曲线进行必要的数据处理,求取对象的特性参数,进而得到对象的数学模型。

3.描述简单对象特性的参数有哪些?

各有何物理意义?

描述对象特性的参数分别是放大系数K、时间常数T、滞后时间

放大系数K放大系数K在数值上等于对象处于稳定状态时输出的变化量与输入的变

化量之比,即

由于放大系数K反映的是对象处于稳定状态下的输出和输入之间的关系,所以放大系数是描述对象静态特性的参数。

时间常数T时间常数是指当对象受到阶跃输入作用后,被控变量如果保持初始速度变

化,达到新的稳态值所需的时间。

或当对象受到阶跃输入作用后,被控变量达到新的稳态值的63.2%所需时间。

时间常数T是反映被控变量变化快慢的参数,因此它是对象的一个重要的动态参数。

滞后时间

滞后时间

是纯滞后时间

和容量滞后

的总和。

输出变量的变化落后于输入变量变化的时间称为纯滞后时间,纯滞后的产生一般是由于介质的输送或热的传递需要一段时间引起的。

容量滞后一般是因为物料或能量的传递需要通过一定的阻力而引起的。

也是反映对象动态特性的重要参数。

4.什么是控制通道和扰动通道(干扰通道)?

对于不同的通道,对象的特性参数(K、T、

)对控制有什么不同的影响?

对于一个被控对象来说,输入量是扰动量和操纵变量,而输出是被控变量。

由对象的输入变量至输出变量的信号联系称为通道。

操纵变量至被控变量的信号联系称为控制通道;

扰动量至被控变量的信号联系称为扰动通道。

一般来说,对于不同的通道,对象的特性参数(K、T、

)对控制作用的影响是不同的。

对于控制通道:

放大系数K大,操纵变量的变化对被控变量的影响就大,即控制作用对扰动的补偿能力强,余差也小;

放大系数K小,控制作用的影响不显著,被控变量的变化缓慢。

但K太大,会使控制作用对被控变量的影响过强,使系统的稳定性下降。

在相同的控制作用下,时间常数T大,则被控变量的变化比较缓慢,此时对象比较平稳,容易进行控制,但过渡过程时间较长;

若时间常数T小,则被控变量变化速度快,不易控制。

时间常数太大或太小,在控制上都将存在一定困难,因此,需根据实际情况适中考虑。

的存在,使得控制作用总是落后于被控变量的变化,造成被控变量的最大偏差增大,控制质量下降。

因此,应尽量减小滞后时间

对于扰动通道:

放大系数K大对控制不利,因为,当扰动频繁出现且幅度较大时,被控变量的波动就会很大,使得最大偏差增大;

而放大系数K小,既使扰动较大,对被控变量仍然不会产生多大影响。

时间常数T大,扰动作用比较平缓,被控变量变化较平稳,对象较易控制。

纯滞后的存在,相当于将扰动推迟

时间才进入系统,并不影响控制系统的品质;

而容量滞后的存在,则将使阶跃扰动的影响趋于缓和,被控变量的变化相应也缓和些,因此,对系统是有利的。

5.实验测取对象特性常用的方法有哪些?

各自有什么特点?

实验测取对象特性常用的方法有阶跃响应曲线法、矩形脉冲法。

阶跃响应曲线法是当对象处于稳定状态时,在对象的输入端施加一个幅值已知的阶跃扰动,然后测量和记录输出变量的数值,就可以画出输出变量随时间变化的曲线。

根据这一响应曲线,再经过一定的处理,就可以得到描述对象特征的几个参数。

阶跃响应曲线法是一种比较简单的方法。

如果输入量是流量,只需将阀门的开度作突然的改变,便可认为施加了一个阶跃扰动,同时还可以利用原设备上的仪表把输出量的变化记录下来,既不需要增加仪器设备,测试工作也不大。

但由于一般的被控对象较为复杂,扰动因素较多,因此,在测试过程中,不可避免地会受到许多其他扰动因素的影响而使测试精度不高。

为了提高精度就必须加大输入量的幅度,这往往又是工艺上不允许的。

因此,阶跃响应曲线法是一种简易但精度不高的对象特性测定方法。

矩形脉冲法是当对象处于稳定状态时,在时间

突然加一幅度为A的阶跃扰动,到

时突然除去,这时测得输出变量随时间变化的曲线,称为矩形脉冲特性曲线。

矩形脉冲信号可以视为两个方向相反、幅值相等、相位为

的阶跃信号的叠加。

可根据矩形脉冲特性曲线,用叠加法作图求出完整的阶跃响应曲线,然后就可以按照阶跃响应曲线进行数据处理,最后得到对象的数学模型。

采用矩形脉冲法求取对象特性,由于加在对象上的扰动经过一段时间后即被除去。

因此,扰动的幅值可以取得较大,提高了实验的精度。

同时,对象的输出又不会长时间偏离设定值,因而对正常工艺生产影响较小。

第三章习题解答p90

1.什么叫仪表的基本误差、测量误差和附加误差?

有何区别?

仪表的基本误差是指在规定条件下仪表的误差。

仪表在制造厂出厂前,都要在规定的条件下进行校验。

规定条件一般包括环境温度、相对湿度、大气压力、电源电压、电源频率、安装方式等。

仪表的基本误差是仪表本身所固有的,它与仪表的结构原理,元器件质量和装配工艺等因素有关,基本误差的大小常用仪表的精度等级来表示。

使用仪表测量参数时,测量的结果不可能绝对准确。

这不仅因为仪表本身有基本误差,而且还因为从开始测量到最后读数,要经过一系列的转换和传递过程,其中受到使用条件、安装条件、周围环境等一系列因素影响,也要产生一定的误差。

所以在很多情况下,仪表的显示数值与标准值(真实值)之间存在着一个差值,这个差值称为测量误差。

通常情况下,仪表的测量误差大于基本误差,因为测量过程还产生-二些附加误差。

附加误差是仪表在非规定的参比工作条件下使用时另外产生的误差。

如电源波动附加误差,温度附加误差等。

2.什么是仪表的反应时间?

用什么方法表示?

当用仪表对被测量进行测量时,被测量突然变化以后,仪表指示值总要经过一段时间后才能准确地显示出来。

反应时间就是用来衡量仪表能不能尽快地反应出参数变化的品质指标。

反应时间的长短,实际上反映了仪表动态特性的好坏。

反应时间的表示方法有两种。

(1)当输入信号突然变化一个数值后,输出信号将由原始值逐渐变化到新稳态值。

仪表

的输出信号(即指示值)由开始变化到新稳态值的63.2%所用的时间,即为反应时间。

(2)用变化到新稳态值的95%所用的时间来表示反应时间。

3.什么是压力?

它的法定计量单位是什么?

压力是垂直均匀地作用在单位面积上的力。

它的法定计量单位是帕斯卡(简称帕),符号为Pa。

1Pa就是1牛顿(N)的力作用在1平方米(

)面积上所产生的压力,即

1pa=1

1Mpa=1000kpa=

pa

4.写出其他压力单位与法定压力单位Pa(帕斯卡)之间的换算关系。

1毫米水柱(mm

)一9.806375Pa

9.81Pa

1工程大气压(kgf/

)一9.80665×

Pa≈9.81×

Pa

1物理大气压(atm)一101325Pa≈1.0133×

1巴(bar)=1000mbar=

5.什么叫绝对压力、表压及真空度?

它们的相互关系是怎样的?

绝对压力绝对真空下的压力称为绝对零压,以绝对零压为基准来表示的压力叫绝对压力。

表压力当绝对压力大于大气压力时,绝对压力高于大气压力的数值称为表压力,简称表压。

真空度当绝对压力小于大气压力时,绝对压力低于大气压力的数值称为真空度或负压。

绝对压力、大气压、表压、真空度之间的相互关系如图3—1所示。

6.弹性压力表有哪些弹性元件?

各有什么用途?

弹性压力表是压力测量中最广泛应用的一种仪表,它是根据各种弹性元件在被测介质压力作用下产生弹性变形的大小来测量压力的。

常用的弹性元件’有下列六种:

单圈弹簧管、多圈弹簧管、(以上两种是测高压、中压、低压用的)、波纹膜片、膜盒、挠性膜片、波纹管(上述四种是测微压和低压用的)。

7.试述弹簧管压力表的基本工作原理。

弹簧管压力表是利用弹簧管在正压或负压的作用下,自由端产生位移,带动传动机构使指针偏转,从而指示出压力值的。

8.霍尔压力传感器是怎样工作的?

它为什么能将压力的变化线性地转换成霍尔电势?

霍尔压力传感器是利用弹性元件的变形位移,然后再利用固接在弹性元件位移部分的霍尔片在磁场中移动,使通过霍尔片的磁感应强度发生变化,从而引起霍尔电势的变化而工作的。

它之所以能将压力的变化线性地转换成霍尔电势,是因为它将霍尔片放置在如图3—2所示的线性非均匀磁场中,霍尔片处于线性非均匀磁场的中间位置时,霍尔片左右两半所通过的磁通方向相反,大小相等,故在霍尔片左右两半产生的霍尔电势也是大小相等方向相反的,故导出端的总电势为零。

当霍尔片随弹性元件的变形位移而发生位移后,霍尔片左右两部分所通过的磁通不仅方向不同,且大小也不相等,故其电势导出端的总电势不再为零,其大小与霍尔片位移有线性关系(因该磁场采用了特殊形状的极靴,使磁感应强度的分布呈线性规律)。

这就是霍尔压力传感器能将压力的变化线性地转换成霍尔电势的原因。

9.什么叫应变片?

如何用它来测量压力?

应变片是由排列成栅状的高阻金属丝、高阻金属箔或半导体粘贴在绝缘的基片上构成。

上面贴有覆盖片(即保护片),电阻丝两端焊有较粗的铜丝作引线,以便与测量电路连接。

如图3—3所示。

应用时,先将应变片牢固地粘贴在试件表面,使其组合成一体,这样当试件受力产生变形时,应变片随同试件表面一起变形,.从而引起电阻变化,变化值和应变片粘贴的构件表面的应变成正比,最后通过测量电路和转换电路,输出相应的电压和电流。

应变片是一种重要的测量敏感元件,它有很多品种系列。

长的有几百毫米,短的只有0.2mm,有单片、双片、应变花和各种特殊形状的图案,可以用在高温、低温和其他各种场合,其用途主要在实验应力分析中测量应力,但也可以做成各种类型的传感器,如压力传感器、加速度计、线位移传感器等。

10.简述压阻式压力传感器的工作原理及特点。

压阻式压力传感器是基于单晶硅的压阻效应而工作的。

当压力变化时,单晶硅产生应变,使直接扩散在上面的应变电阻产生与被测压力成比例的变化,再由桥式电路获得相应的电压输出信号。

它的特点是精度高、工作可靠、频率响应高、迟滞小、尺寸小、重量轻、结构简单等。

更可适应于恶劣的环境条件下工作,便于实现显示数字化。

11.什么是两线制?

两线制有什么优点?

两线制是指现场变送器与控制室仪表联系仅用两根导线,这两根线即是电源线,又是信号线。

与四线制(两根电源线,两根信号线)相比,两线制的优点是:

(1)可节省大量电缆线和安装费用;

(2)有利于安全防爆。

12.什么叫智能检测仪表?

它有什么特点?

智能检测仪表就是在普通压力或差压传感器的基础上增加微处理器电路而形成的仪表。

例如,用带有温度补偿的电容传感器与微处理器相结合,构成精度为0.1级的压力或差压变送器,其量程范围为100:

1,时间常数在0~36s间可调,通过手持通信器,可对1500m之内的现场变送器进行工作参数的设定、量程调整以及向变送器加入信息数据。

智能型变送器的特点是:

(1)可进行远程通信,利用手持通信器,可对现场变送器进行各种运行参数的选择与标定,

(2)精确度高,使用与维修方便I(3)通过编制各种程序,使变送器具有自修正、自补偿、自诊断及错误方式告警等多种功能,因而提高了变送器的精确度,简化了调整、校准与维护过程;

(4)使变送器与计算机、控制系统直接对话I(5)长期稳定工作能力强,每五年才需校验一次。

13.什么叫流量和总量?

有哪几种表示方法?

互相之间的关系是什么?

流量是指单位时间内流过管道某一截面的流体数量,即瞬时流量。

总量是在一段时间内流过管道的流体流量的总和。

流量分体积流量、质量流量。

单位时间内流过的流体以体积表示的,称为体积流量,常以Q表示。

单位时间内流过的流体以质量表示的,称为质量流量,常以M表示。

它们之间的关系是:

式中

——流体的密度。

14.什么是节流现象?

标准的节流体有哪几种?

应用最广泛的是哪种?

流体在有节流装置的管道中流动时,在节流装置前后的管壁处,流体的静压力产生差异的现象称为节流现象。

标准的节流件有三种:

标准孔板、标准喷嘴、标准文丘里管。

应用最广泛的是标准孔板。

它已有100多年的历史,至今它是世界上应用最广,最成熟,测量较准确的测量工具。

15.试简述涡轮流量计的测量过程及其特点。

涡轮流量计是先将流体的流速(流量)转换为安装在管道内的涡轮的转速,然后通过磁电感应转换器将其转换为相应电信号的频率来进行测量的。

涡轮流量计的特点是安装方便、测量精度高、可耐高压、响应快、可浈IJ脉动信号、输出信号为电频率信号,便于远传,不受干扰。

涡轮流量计的涡轮易磨损,因此一般应加过滤器。

为使流向比较平稳,其前后应保证有一定的直管段。

16.试简述电磁流量计的工作原理及其特点。

电磁流量计是基于电磁感应定律工作的。

它是将流体的流速转换为感应电势的大小来进行测量的。

电磁流量计的特点有:

(1)电磁流量计由于没有可动部件和插入管道的阻力件,没有使流体收缩和改变流体的流柬,所以压力损失小,也很少堵塞,对测量导电性液体是较为适用的。

另外,由于电磁流量计的衬里和电极是防腐的,所以也用来测量腐蚀性介质的流量。

(2)电磁流量计流速测量范围很宽(0.5~10m/s),口径从1mm到2m以上,反应快、惰性小。

可用于测量脉动流体、双相流体以及灰浆等含固体颗粒的液体流量。

17.什么是漩涡流量计?

简述其工作原理?

漩涡流量计又称涡街流量计也叫卡曼涡街流量计。

它是利用流体自然振荡的原理制成的一种漩涡分离型流量计。

当流体以足够大的流速流过垂直于流体流向的物体时,若该物体的几何尺寸适当,则在物体的后面,沿两条平行直线上产生整齐排列,转向相反的涡列。

涡列的个数,即涡街频率,和流体的速度成正比。

因而通过测旋涡频率,就可知道流体的流速,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 起诉状

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1