最新山西省中考数学模拟试题及答案word范文模板 26页Word格式.docx
《最新山西省中考数学模拟试题及答案word范文模板 26页Word格式.docx》由会员分享,可在线阅读,更多相关《最新山西省中考数学模拟试题及答案word范文模板 26页Word格式.docx(22页珍藏版)》请在冰豆网上搜索。
C.概率是随机的,与频率无关
D.随着试验次数的增加,频率一般会越来越接近概率
8.(3分)(201X•山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°
,则∠C的度数为( )
A.30°
B.40°
C.50°
9.(3分)(201X•山西)PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为( )
A.2.5×
10﹣5mB.0.25×
10﹣7mC.2.5×
10﹣6mD.25×
10﹣5m
10.(3分)(201X•山西)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的变长为a,则重叠部分四边形EMCN的面积为( )
A.a2B.a2C.a2D.a2
二、填空题(共6小题,每小题3分,共18分)
11.(3分)(201X•山西)计算:
3a2b3•2a2b= _________ .
12.(3分)(201X•山西)化简+的结果是 _________ .
13.(3分)(201X•山西)如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于A、B两点,与反比例函数y=在第一象限内的图象交于点C,且A为BC的中点,则k= _________ .
14.(3分)(201X•山西)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:
三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是 _________ .
15.(3分)(201X•山西)一走廊拐角的横截面积如图,已知AB⊥BC,AB∥DE,BC∥FG,且两组平行墙壁间的走廊宽度都是1m,的圆心为O,半径为1m,且∠EOF=90°
,DE、FG分别与⊙O相切于E、F两点.若水平放置的木棒MN的两个端点M、N分别在AB和BC上,且MN与⊙O相切于点P,P是的中点,则木棒MN的长度为 _________ m.
16.(3分)(201X•山西)如图,在△ABC中,∠BAC=30°
,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为 _________ .
三、解答题(共8小题,共72分)
17.(10分)(201X•山西)
(1)计算:
(﹣2)2•sin60°
﹣()﹣1×
;
(2)分解因式:
(x﹣1)(x﹣3)+1.
18.(6分)(201X•山西)解不等式组并求出它的正整数解:
.
19.(6分)(201X•山西)阅读以下材料,并按要求完成相应的任务.
几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形﹣﹣筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似.
定义:
两组邻边分别相等的四边形,称之为筝形,如图,四边形ABCD是筝形,其中AB=AD,CB=CD
判定:
①两组邻边分别相等的四边形是筝形
②有一条对角线垂直平分另一条对角线的四边形是筝形
显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点
如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:
(1)请说出筝形和菱形的相同点和不同点各两条;
(2)请仿照图1的画法,在图2所示的8×
8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:
①顶点都在格点上;
②所涉及的图案既是轴对称图形又是中心对称图形;
③将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影).
20.(10分)(201X•山西)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:
分):
项目
人员阅读思维表达
甲938673
乙958179
(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?
(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:
5:
2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?
(3)公司按照
(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:
85≤x<
90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?
请说明理由,并求出本次招聘人才的录用率.
21.(7分)(201X•山西)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:
2,钢缆BC的坡度i2=1:
1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?
(注:
坡度:
是指坡面的铅直高度与水平宽度的比)
22.(9分)(201X•山西)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了2201X米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.
(1)该项绿化工程原计划每天完成多少米2?
(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
23.(11分)(201X•山西)课程学习:
正方形折纸中的数学.
动手操作:
如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.
数学思考:
(1)求∠CB′F的度数;
(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE与∠GCB′的大小关系,并说明理由;
解决问题:
(3)如图3,按以下步骤进行操作:
第一步:
先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;
第二步:
沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;
第三步:
设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q的形状,并证明你的结论.
24.(13分)(201X•山西)综合与探究:
如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.
(1)求抛物线W的解析式及顶点D的坐标;
(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0
(3)在
(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N时抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?
若存在,请直接写出点M的坐标;
若不存在,请说明理由.
2018年山西省中考数学模拟试题答案
考点:
有理数的加法.
分析:
根据异号两数相加的法则进行计算即可.
解答:
解:
因为﹣2,3异号,且|﹣2|<
|3|,所以﹣2+3=1.
故选A.
点评:
本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.
平行线的性质.
根据“两直线平行,同旁内角互补”和“对顶角相等”来求∠2的度数.
如图,∵AB∥CD,∠1=110°
,
∴∠1+∠3=180°
,即100+∠3=180°
∴∠3=70°
∴∠2=∠3=70°
.
故选:
B.
本题考查了平行线的性质.
总结:
平行线性质定理
定理1:
两条平行线被第三条直线所截,同位角相等.简单说成:
两直线平行,同位角相等.
定理2:
两条平行线被地三条直线所截,同旁内角互补..简单说成:
两直线平行,同旁内角互补.
定理3:
两条平行线被第三条直线所截,内错角相等.简单说成:
两直线平行,内错角相等.
完全平方公式;
合并同类项;
同底数幂的乘法;
零指数幂.
专题:
计算题.
A、原式合并同类项得到结果,即可做出判断;
B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;
C、原式利用完全平方公式展开得到结果,即可做出判断;
D、原式利用零指数幂法则计算得到结果,即可做出判断.
A、原式=8a2,故选项错误;
B、原式=a8,故选项错误;
C、原式=a2+b2+2ab,故选项错误;
D、原式=1,故选项正确.
故选D.
此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.
勾股定理的证明.
“弦图”,说明了直角三角形的三边之间的关系,解决了勾股定理的证明.
“弦图”,说明了直角三角形的三边之间的关系,解决的问题是:
勾股定理.
故选C.
本题考查了勾股定理的证明,勾股定理证明的方法最常用的思路是利用面积证明.
简单组合体的三视图.
根据从左边看得到的图形是左视图,可得答案.
从左边看第一层一个正方形,第二层一个正方形,
C.
本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
6.(3分)(201X•山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )
二次函数的性质;
一次函数的性质;
反比例函数的性质.
数形结合.
从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.
学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.
故选B.
本题考查了二次函数的性质:
二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:
当a>
0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<
﹣时,y随x的增大而减小;
x>
﹣时,y随x的增大而增大;
x=﹣,时,y取得最小值,即顶点是抛物线的最低点;
当a<
0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<
x=﹣时,y取得最大值,即顶点是抛物线的最高点.
7.(3分)(201X•山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )
B.频率与试验次数无关
利用频率估计概率.
根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.
∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,
∴A、B、C错误,D正确.
本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.
圆周角定理.
根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.
∵OA=OB,∠OBA=50°
∴∠OAB=∠OBA=50°
∴∠AOB=180°
﹣50°
×
2=80°
∴∠C=∠AOB=40°
此题综合运用了三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.
9.(3分)(201X•山西)PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为( )
科学记数法—表示较小的数.
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×
10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
2.5μm×
0.000001m=2.5×
10﹣6m;
本题考查用科学记数法表示较小的数,一般形式为a×
10﹣n,其中1≤|a|<
10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
全等三角形的判定与性质;
正方形的性质.
作EM⊥BC于点M,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形MCQE的面积求解.
作EM⊥BC于点M,EQ⊥CD于点Q,
∵四边形ABCD是正方形,
∴∠BCD=90°
又∵∠EPM=∠EQN=90°
∴∠PEQ=90°
∴∠PEM+∠MEQ=90°
∵三角形FEG是直角三角形,
∴∠NEF=∠NEQ+∠MEQ=90°
∴∠PEM=∠NEQ,
∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°
∴EP=EN,四边形MCQE是正方形,
在△EPM和△EQN中,
,
∴△EPM≌△EQN(ASA)
∴S△EQN=S△EPM,
∴四边形EMCN的面积等于正方形MCQE的面积,
∵正方形ABCD的边长为a,
∴AC=a,
∵EC=2AE,
∴EC=a,
∴EP=PC=a,
∴正方形MCQE的面积=a×
a=a2,
∴四边形EMCN的面积=a2,
D.
本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM≌△EQN.
3a2b3•2a2b= 6a4b4 .
单项式乘单项式.
根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.
3a2b3•2a2b
=(3×
2)×
(a2•a2)(b3•b)
=6a4b4.
故答案为:
6a4b4.
此题考查了单项式乘以单项式,熟练掌握运算法则是解本题的关键.
12.(3分)(201X•山西)化简+的结果是 .
分式的加减法.
原式通分并利用同分母分式的加法法则计算即可得到结果.
原式=+==.
此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.
13.(3分)(201X•山西)如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于A、B两点,与反比例函数y=在第一象限内的图象交于点C,且A为BC的中点,则k= 4 .
反比例函数与一次函数的交点问题.
先确定B点坐标,根据A为BC的中点,则点C和点B关于点A中心对称,所以C点的纵坐标为4,再利用反比例函数图象上点的坐标特征可确定C点坐标,然后把C点坐标代入y=kx﹣4即可得到k的值.
把y=0代入y=kx﹣4得y=﹣4,则B点坐标为(0,﹣4),
∵A为BC的中点,
∴C点的纵坐标为4,
把y=4代入y=得x=2,
∴C点坐标为(2,4),
把C(2,4)代入y=kx﹣4得2k﹣4=4,解得k=4.
故答案为4.
本题考查了反比例函数与一次函数的交点问题:
反比例函数与一次函数图象的交点坐标满足两函数解析式.
14.(3分)(201X•山西)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:
三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是 .
列表法与树状图法.
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与通过一次“手心手背”游戏能决定甲打乒乓球的情况,再利用概率公式即可求得答案.
分别用A,B表示手心,手背.
画树状图得:
∵共有8种等可能的结果,通过一次“手心手背”游戏能决定甲打乒乓球的有4种情况,
∴通过一次“手心手背”游戏能决定甲打乒乓球的概率是:
=.
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:
概率=所求情况数与总情况数之比.
,DE、FG分别与⊙O相切于E、F两点.若水平放置的木棒MN的两个端点M、N分别在AB和BC上,且MN与⊙O相切于点P,P是的中点,则木棒MN的长度为 (4﹣2) m.
切线的性质.
应用题.
连接OB,延长OF,OE分别交BC于H,交AB于G,证得四边形BGOH是正方形,然后证得OB经过点P,根据勾股定理切点OB的长,因为半径OP=1,所以BP=2﹣1,然后求得△BPM≌△BPN得出P是MN的中点,最后根据直角三角形斜边上的中线等于斜边的一半即可求得.
连接OB,延长OF,OE分别交BC于H,交AB于G,
∵DE、FG分别与⊙O相切于E、F两点,
∴OE⊥ED,OF⊥FG,
∵AB∥DE,BC∥FG,
∴OG⊥AB,OH⊥BC,
∵∠EOF=90°
∴四边形BGOH是矩形,
∵两组平行墙壁间的走廊宽度都是1m,⊙O半径为1m,
∴OG=OH=2,
∴矩形BGOH是正方形,
∴∠BOG=∠