高数B二期末参考复习资料Word格式.docx

上传人:b****3 文档编号:18322056 上传时间:2022-12-15 格式:DOCX 页数:12 大小:24.65KB
下载 相关 举报
高数B二期末参考复习资料Word格式.docx_第1页
第1页 / 共12页
高数B二期末参考复习资料Word格式.docx_第2页
第2页 / 共12页
高数B二期末参考复习资料Word格式.docx_第3页
第3页 / 共12页
高数B二期末参考复习资料Word格式.docx_第4页
第4页 / 共12页
高数B二期末参考复习资料Word格式.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

高数B二期末参考复习资料Word格式.docx

《高数B二期末参考复习资料Word格式.docx》由会员分享,可在线阅读,更多相关《高数B二期末参考复习资料Word格式.docx(12页珍藏版)》请在冰豆网上搜索。

高数B二期末参考复习资料Word格式.docx

2、求极限:

 

(11n2+1+122n2+1+…+1n2n2+1)1n

解:

原式=

=limn→+∞1nk=1n11+kn2

=0111+x2dx

=arctanx︱01=π4

4、求极限:

limx→+∞0x1+t2dtx+0xsintdtx2。

解:

由于limx→+∞0x1+t2dtx=limx→+∞1+x21=1(洛必达法则)

limx→+∞0xsintdtx2=limx→+∞ddx0xsintdtddx(x2)(洛必达法则)

=limx→+∞sinx2x=12

故原式=1+12=32

5、设函数f(x)连续,且0x2-1ftdt=x,求f(8)。

对等式两边求导有f(x2-1)2x=1

令x2-1=8.得x=3.代入得f(8)=16

6、设f(x)在区间[0,且满足f(x)=x2cosx+0π2ftdt.试求f(x)。

不妨设0π2ftdt=A。

则有f(x)=x2cosx+A

A=0π2fxdx=0π2(x2cosx+A)dx=0π2x2dsinx+π2A

=x2sinx︱0π2

20π2cosxdx+2xcosx︱0π2+π2A

=π24

2+π2A,故A=π2

82(2

π)

所以f(x)=x2cosx+π2

7、证明方程lnx=xe

8、0π1-cos2xdx在区间(0,+∞)内只有两个不同的实根。

证明:

令F(x)=xe

lnx-0π1-cos2xdx,则limx→+∞F(x)=limx→+∞x(1e

lnxx)-0π1-cos2xdx=+∞

limx→0+F(x)=limx→0+(xe

lnx-0π1-cos2xdx)=+∞

又F’(x)=1e-1x=x-ee*x,当x=e的时候,F’(x)=0.当x>

e时,F’(x)>

0,当0<

x<

e时,F’(x)<

0。

所以F(x)在(0,e)单调递减。

在(e,+∞)单调递增。

由于F(e)=-0π1-cos2xdx=-22<

由零点定理有F(x)在(0,e)和(e,+∞)分别有唯一的零点。

所以命题得证。

9、试确定常数a、b、c的值,使limx→0ax-sinxbxln(1+t3)tdt=c(c≠0)。

当x→0时,ax-sinx→0,若使c≠0,则必须bxln(1+t3)tdt→0x→0,从而b=0。

因为当b>

0时,则ln(1+t3)t>

0(t∈0,b)若b<

0,则ln(1+t3)t>

0(t∈b,0),均与题意不符,故b=0。

又等式左边=limx→0ax-sinxln(1+x3)x=limx→0ax-sinxx2=c=右边。

故a=1且c=12。

10、设f(x)=0xsintπ-tdt,求0xf(x)dx。

由已知有f’(x)=sinxπ-x,则

0xf(x)dx=f(x)x︱0π-0xxf'

(x)dx

=πf(π)-0πxsinxπ-xdx

=π0xsintπ-tdt-0πxsinxπ-xdx

=π0πsinxπ-xdx-0πxsinxπ-xdx

=0πsinxdx=2

11、设函数f(x)连续,且0xtf2x-tdt=12arctanx2,已知f1=1求12fxdx的值。

令μ=2x-t则dt=-dμ,0xtf2x-tdt=-2xx(2x-μ)fμdμ=2xx2xfμdμ-x2xμfμdμ

从而2xx2xfμdμ-x2xμfμdμ0xtf2x-tdt=12arctanx2,两端求导有

2x2xfμdμ+2x2f2x-fx-[2xf2x*2-xf(x)]=x1+x4

故x2xfμdμ=x21+x4+12xfx。

令x=1,得12fxdx=12fudu=34

12、曲线C的方程y=f(x),点(2,3)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)设函数f(x)具有三阶连续导数,计算定积分03x2+xf'

'

xdx。

由已知有f(0)=0,f’(0)=2,f(3)=2,f’(3)=-2,f’’(3)=0,故

原式=03x2+xdf'

x

=x2+xf'

x︱03-031+2xf'

xdx

=-031+2xdf'

=-1+2xf'

x︱03+203f'

=16+2[f(3)-f(0)]=20

13、计算下列定积分。

1.01x4-xdx⑵14dxx1+x

2.⑶01xdx2-x21-x2⑷-1212[sinx*tan2x3+cos3x+ln(1-x)]dx

3.解:

⑴令t=4-x,则

4.原式=322(4-t2)dt=2(4t-13t3)∣32=-2(163-33)

5.令x=u则

6.原式=122uduu21+udu=212(1u-11+u)du=2lnu1+u∣12=2ln43

7.令x=sint,则dx=costdt

8.原式=0π2sintcostdt1+cos2tcost=-0π2dcost1+cos2t=-arctan(cost)∣0π2=π4

9.由sinx*tan2x3+cos3x为奇函数,则

10.原式=-1212ln(1-x)dx

11.=xln(1-x)∣-1212--1212-x1-xdx

12.=[xln(1-x)-x-ln(1-x))]∣-1212=32ln3-ln2-1

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.第六章、定积分的应用

29.定积分的应用:

①求平行图形的面积

30.②求体积

31.③求平面曲线的弧长

32.

33.直角坐标系

34.极坐标系

35.参数方程

36.平面图形面积

37.A=abfxdx

38.A=ab12ρ2θdθ

39._____

40.旋转体体积

41.V=πab(fx)2dx

42.

43.

44.平面曲线弧长

45.S=ab1+[f'

x]2dx

46.S=abρ2θ+ρ'

(θ)2dθ

47.S=abφ'

(t)2+Ψ'

(t)2dt

48.旋转体侧面积

49.A=2πabf(x)1+f'

(x)2dx

50.A=2πρθsinθ

51.ρ2θ+ρ'

52.A=2παβyt

53.x'

t2+y'

54.例题

55.1、求曲线x2+3y2=6y与直线y=x所谓图形的面积。

56.解:

由x2+3y2=6y的交点(0,0)和y=x(32,32)

57.设小的一块面积为A,大的B,则

58.A=0326y-3y-ydy=30321-(y-1)2dy-98

59.令y-1=t,则A=3-1121-t2dt-98,令t=sinu,则

60.A=3-π2π6cos2udu-98=33π-34

61.B=椭圆面积-A=233π+34

62.2、求由抛物线y2=x与y2=-x+4所围图形面积。

63.解:

联立y2=x得交点(2,-2)、(2,2)

64.y2=-x+4

65.则S=-22(-y2+4-y2)dy=202(-2y2+4)dy

66.=4(2y-13y3)∣02=1632

67.3、设有一正椭圆柱体,其底面的长、短轴分别为2a、2b,用此柱体底面的短轴且与底面成α角(0<

α<

π2)的平面截此柱体,得一楔形体,求此楔形体的体积。

68.解:

由已知有底面椭圆的方程为x2a2+y2b2=1,以垂直于y轴的平面截此楔形体所得的截面为直角三角形其一直角边长为a1-y2b2,另一直角边边长为a1-y2b2tanα,故此截面面积为s(y)=a22(1-y2b2)tanα。

69.楔形体的体积为V=20ba22(1-y2b2)tanαdy=2a2b3tanα

70.4、已知曲线y=f(x)的方程为x2+2y2=1x>

0,y>

0,又曲线y=sinx在[0,π]上的弧长为l,试用l表示y=fx的弧长s。

71.解:

由已知有l=20π21+cos2xdx,曲线y=f(x)的参数方程为x=cosθ(0≤θ≤π2)

72.y=22sinθ

73.故s=0π2sin2θ+12cos2θdθ=120π2sin2θ+1dθ,令θ=π2-t,则

74.S=12π20cos2t+1(-dt)=24l

75.5、曲线y=ex+e-x2与直线x=0,x=t(t>

0)及y=0围成的曲边梯形,该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t),求

(1)S(t)V(t)

(2)极限limn→+∞S(t)F(t)

76.解:

(1)S(t)=0t2πy1+y'

2dx

77.=2π0tex+e-x21+(ex-e-x2)2dx

78.=2π0t(ex+e-x2)2dx

79.V(t)=π0ty2dx=π0t(ex+e-x2)2dx

80.故S(t)V(t)=2

81.

(2)F(t)=πy2︱t=π(ex+e-x2)2,

82.则limn→+∞S(t)F(t)=limn→+∞2π0t(ex+e-x2)2dxπ(ex+e-x2)2=limn→+∞2(ex+e-x2)22ex+e-x2(ex-e-x2)

83.=limn→+∞ex+e-xex-e-x=limn→+∞1+e-2x1-e-2x=1

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.第七章、微分方程

95.一、常微分方程的概念

96.二、常微分方程解的概念:

包括阶、通解、特解、初始条件。

97.三、可用初等方法解出的方程类型:

可分离变量的方程、齐次方程、一阶线性方程、伯努利方程、可用简单变量代换的方程、可降阶的高阶微分方程

98.四、线性微分方程解的性质及解的结构定理

99.五、二阶常系数齐次线性微分方程

100.六、简单的二阶常系数非齐次线性微分方程

101.例题

102.1、设f(x)=sinx-0xx-tftdt,

103.其中f为连续函数,求f所满足的微分方程。

104.解:

两边关于x求导,有f’(x)=cosx-0xftdt

105.在两边求导有f’’(x)=-sinx-f(x),即f’’(x)+f(x)=-sinx

106.又有f(0)=0,f’(0)=1,所以f(x)所满足的微分方程为

107.y’’+y’=-sinx

108.y︱x=0=0,y'

︱x=0=1.

109.2、求下列微分方程的通解

110.

(1)xdy-ydx=xx2+y2dx

(2)dydx=(x+y-1x+y+1)2

111.

(1)解:

设y=xv,则dy=vdx+xdv,

112.原式化为x(vdx+xdv)-xvdx=xx2+x2v2dx

113.即dv=±

1+v2dx,当x>

0时,

114.有dv1+v2=dx,积分有ln(v+1+v2)=x+c

115.即(v+1+v2)=Cex,把v=yx代入有y+x2+y2=Cxex

116.当x<

0时,可以得到y-x2+y2=Cxex

117.

(2)设u=x+y,则dudx=1+dydx

118.故dudx=1+(u-1u+1)2即(1+2u1+u2)du=2dx

119.积分有u+ln(1+u2)=2x+C,变量还原,

120.有(x+y)2=Cex-y-1

121.3、求下列方程的通解

122.

(1)y3dx+2x2-xy2dy=0

123.

(2)(y4-3x2)dy+xydx=0

124.(3)dydx=yx+tanyx

125.

(1)解:

令x=u2,dx=2udu,则原式化

126.为y3udu+u4-u2y2dy=0

127.即(yu)3du+[1-yu)2dy=0

128.令y=zu,则dy=zdu+udz,原方程化

129.为z3du+1-z2zdu+udz=0

130.分离变量:

z2-1zdz=duu

131.积分有12z2-lnz=lnu+C1,

132.故有y2=xlny2+C

133.

(2)解:

令x=u2,dx=2udu,方程化

134.为[(yu)4-3]dy+2yudu=0

135.令yu=z,则y=uz,则方程化

136.为3-z4z5-zdz=duu,即2z3z4-1-3zdz=duu

137.积分:

12ln(z4-1)-3lnz=lnu+lnC1

138.故z4-1=Cz6u2

139.所以y4-x2=Cy6

140.(3)解:

设yx=u,则原方程变

141.为xdudx+u=u+tanu,即cotudu=dxx,积分:

sinu=Cx,

142.故sinyx=Cx

143.4、求下列方程的通解。

144.

(1)xy’lnx+y=ax(lnx+1)

(2)(x-2xy-y2)dydx+y2=0

145.

(1)解:

化为y’+1xlnxy=a(lnx+1)lnx

146.相应的齐次方程为y’+1xlnxy=0,积分得其通解

147.为lny=-lnlnx+lnC,即y=C1lnx

148.令原方程解为y=C(x)lnx,

149.则C'

(x)lnx=a(lnx+1)lnx,C'

x=a(lnx+1)

150.从而C(x)=axlnx+C

151.故原方程通解为y=axlnx+Clnx

152.

(2)化为dxdy+1-2yy2x=1其解

153.为x=e-1-2yy2dy(e1-2yy2dydy+C)=y2+Cy2e1y

154.故通解为x=y2+Cy2e1y

155.5、设函数f(x)可微,且满足0x2ft-1dt=fx-1,求f(x)。

156.解:

对原式两边求导有f’(x)=2f(x)-1,由公式得其通解为f(x)=e2dx-e-2dx+C=12+Ce2x

157.又f(0)=1,故C=12

158.所以f(x)=12(1+e2x)

159.6、求下列微分方程的通解:

160.

(1)x2y'

+xy=y2

(2)2xy3y'

+x4-y4=0

161.

(1)解:

化为y-2y'

+1xy-1=1x2,令y-1=z,则

162.-y-2y'

=z'

,有z’-zx=-1x2

163.代入公式解得z=12x+Cx

164.故y=2x1+2Cx2

165.

(2)解:

化为y’-12xy=-x32y-3,设u=y4,则

166.得u’-412xu=4(-x32),即u'

-2xu=-2x3

167.代入公式有u=x2-x2+C故通解为x4+y4=Cx2

168.7、求下列微分方程的通解:

169.

(1)y(n)=eax+xb

(2)y’’=y’+x

170.(3)y’’=(y'

)3+y'

(4)yy’’-y'

2-6xy2=0

171.

(1)解:

由于eaxdx=1aeax,xtdt=1t+1xt+1

172.故通解为y=1aneax+[b+nb+n-1⋯b+1]-1xb+n+C1xn-1+C2xn-2⋯+Cn-1x+Cn

(2)解:

令y’=p,y’’=p’.则

173.P’=p+x即p’-p=x

174.代入公式有p=C1ex-x-1,则

175.y=C1ex-x-1dx=C1ex-12x2+C2

176.(3)解:

令y’=p,则y’’=pdpdy,得pdpdy=p3+p

177.当p=0时,y=C为方程的解

178.当p≠o时,有dpdy=1+p2,得arctanp=y-C1,即

179.y’=tan(y-C1),有dytan(y-C1)=dx.得lnsin(tan(y-C1))=x+lnC2

180.故sin(y-C1)=C2ex,即y=arcsinC2ex+C1

181.(4)解:

化为(yy’)’+1=0,故yy’+x=C1

182.即ydy=(C1-x)dx,积分有12y2=-12(C1-x)2+12C2

183.即y2+(C1-x)2=C2

184.8、证明函数y=1xC1ex+C2e-x+ex2(C1、C2为任意常数)是方程xy’’+2y’-xy=ex的通解。

185.证明:

记y1=1xex,y2=1xe-x,y*=ex2。

186.y1'

=(x-1-x-2)ex,y1'

=(x-1-2x-2-2x-3)ex

187.y2'

=(-x-1-x-2)e-x,y2'

=(x-1+2x-2+2x-3)e-x

188.代入验证知y1,y2是xy’’+2y’-xy=0的解

189.且y1y2不为常数,故C1y1+C2y2是齐次方程的通解。

190.而y*=y*'

=y*'

=ex2,故xy*'

+2y*'

+y*=ex

191.即y*是非齐次方程的特解

192.所以y=1xC1ex+C2e-x+ex2(C1、C2为任意常数)是非齐次线性方程的通解。

193.9、一个单位质量的质点以初速度v0从O点开始沿x轴作直线运动运动过程中它受到一个沿运动方向的推力和一个相反方向的阻力且推力大小和阻力大小分别与此质点到原点的距离,质点运动的速率成正比,比例系数分别为k1、k2,求反映质点运动的函数。

194.解:

设坐标轴x的正向与初速度方向相同。

195.由已知有x’’=k1x-k2x'

196.x|t=0=0,x’|t=0=v0

197.特征方程为λ2+k2λ-k1=0,故λ1,2=-k2±

k22+4k12

198.故原方程通解为X=C1eλ1t+C2eλ2t,由初始条件有

199.C1=v0λ1-λ2,C2=-v0λ1-λ2

200.所以函数为x=v0k22+4k1eλ1t[1-eλ1-λ2t],λ1、λ2值如上所示。

10、设函数y=f(x)在(-∞,+∞)内有二阶导数,且y’≠0.x=x(y)是y=y(x)的反函数

(1)试将x=x(y)满足的微分方程d2xdy2+y+sinxdxdy3=0变换为y=y(x)满足的微分方程。

(2)球变换后微分方程所满足初始条件y(0)=0,y’(0)=32的解。

201.解:

(1)dxdy=1y'

即y'

dxdy=1,两端对x求导有

202.y'

’dxdy+d2xdy2(y'

)2=0

203.所以d2xdy2=-y'

’dxdy(y'

)2=-y'

’(y'

)3,代入原方程有y’’-y=sinx①

204.

(2)①所对应的齐次方程的通解为Y=C1ex+C2e-x,设①的特解为y*=Acosx+Bsinx,代入①有A=0,B=-12,故y*=-12sinx。

205.所以y’’-y=sinx的通解为y(x)=C1ex+C2e-x-12sinx,而y(0)=0,y’(0)=32得

206.C1=1C2=-1

207.所以所求解为y(x)=ex-e-x-12sinx

208.

209.

210.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1