热力学第二定律文档格式.docx

上传人:b****6 文档编号:18046956 上传时间:2022-12-13 格式:DOCX 页数:10 大小:94.48KB
下载 相关 举报
热力学第二定律文档格式.docx_第1页
第1页 / 共10页
热力学第二定律文档格式.docx_第2页
第2页 / 共10页
热力学第二定律文档格式.docx_第3页
第3页 / 共10页
热力学第二定律文档格式.docx_第4页
第4页 / 共10页
热力学第二定律文档格式.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

热力学第二定律文档格式.docx

《热力学第二定律文档格式.docx》由会员分享,可在线阅读,更多相关《热力学第二定律文档格式.docx(10页珍藏版)》请在冰豆网上搜索。

热力学第二定律文档格式.docx

热机效率η=A/Q1=1-T3/T1=0.31

∴A=ηQ1=0.31Q1致冷机的致冷系数

ε=Q2/A=T2/(T3-T2)

∴Q2=A·

T2/(T3-T2)=0.31Q1288/(333-288)=1.984Q1

而Q1=qM=5000×

1Kcal

∴暖气系统得到的热量为:

Q=Q3+Q4=(Q1-A)+(A+Q2)=Q1+Q2

=Q1+1.984Q1=2.984×

5000=1.492×

104Kcal

=6.24×

104KJ

6-3 

一理想气体准静态卡诺循环,当热源温度为100℃,冷却器温度为0℃时,作净功800J,今若维持冷却器温度不变,提高热源温度,使净功增加为1.60×

103J,则这时:

(1) 

热源的温度为多少?

(2) 

效率增大到多少?

设这两个循环都工作于相同的两绝热线之间。

(1)如图卡诺循环1234和1′2′34的两条绝热线相同,所以它们放给低温热源的热量相等,即Q2=Q2′

循环1234的效率为

η=A/Q1=A/(A+Q2)=1-(T2/T1)

∴Q2=AT2/(T1-T2)

循环1′2′34的效率为

η′=A′/Q1′=A′/(A′+Q2′)=1-(T2/T1′)

∴Q2′=A′T2/(T1′-T2)

Q2=Q2′,有

AT2/(T1-T2)=A′T2/(T1′-T2)

代入已知,解之T1′=473K

(2)η′=1-T2/T1′=1-273/473=42.3%

6-4一热机工作于50℃与250℃之间,在一循环中对外输出的净功为1.05×

106J,求这热机在一循环中所吸入和放出的最小热量。

在功和热源一定的条件下,当循环可逆时,循环中吸入和放出的热量都最小。

可逆循环的效率

η=A/Q1=1-T2/T1

∴Q1=A/(1-T2/T1)=2.75×

106J

即循环中吸入的最小热量。

而放出的最小热量为

Q2=Q1-A=1.7×

106J

6-5一可逆卡诺热机低温热源的温度为7.0℃,效率为40%。

若要将其效率提高到50%,则高温热源的温度需提高几度?

η=1-T2/T1则T1=T2/(1-η)

提高后,

η′=1-T2/T1′则T1′=T2/(1-η′)

代入数据

则高温热源的温度提高

△T=T1′-T1=93K

6-6一制冰机低温部分的温度为-10℃散热部分的温度为35℃,所耗功率为1500W,制冰机的制冷系数是逆向卡诺循环制冷机制冷系数的1/3。

今用此制冰机将25℃的水制成-18℃的冰,问制冰机每小时能制冰多少千克(冰熔解热为80cal·

g-1,冰的比热为0.50cal·

g-1·

K-1)

制冰机的制冷系数为

ε=Q2/A=1/3ε卡=1/3T2/(T1-T2)

∴制冰机每秒从低温部分吸收的热量为

Q2=

=2922J

而每小时可从低温部分吸收的热量为3600Q2

设每小时能制冰m克,则m克25℃的水变成-18℃的冰要放出的热量为

25m+80m+0.5×

18m=114mcal

由热平衡方程得

4.18×

114m=3600×

2922

∴m=2.2×

104克=22千克

6-7试证明:

任意循环过程的效率,不可能大于工作于它所经历的最高热源温度与最低热源温度之间的可逆卡诺循环的效率。

(提示:

先讨论任一可逆循环过程,并以一连串微小的可逆卡诺循环代替这循环过程。

如以Tm和Tn分别代表这任一可逆循环所经历的最高热源温度和最低热源温度。

试分析每一微小卡诺循环效率与1-Tn/Tm的关系)

证:

(1)当任意循环可逆时,用图中封闭曲线R表示,而R可用图中一连串微小的可逆卡诺循环来代替,这是由于考虑到:

任两相邻的微小可逆卡诺循有一总,环段绝热线是共同的,但进行方向相反从而效果相互抵消,因而这一连串微小可逆卡循环的总效果就和图中锯齿形路径所表示的循环相同;

当每个微小卡诺循环无限小而趋于数总无限多时,其极限就趋于可逆循环R。

考虑任一微小可逆卡诺循环,如图中阴影部分所示,系统从高温热源Ti吸热Qi,向低温热源Ti放热,对外作功Ai,则效率

ηi=Ai/Qi∴Qi=Ai/ηi

任意可逆循环R的效率为

η=A/∑Qi

A为循环R中对外作的总功。

∴A/η=

=

(1)

又,Tm和Tn是任意循环所经历的最高温热源和最低温热源的温度。

∴对任一微小可逆卡诺循环,必有:

Ti≤Tm,Tj≥Tn

或Tj/Ti≥Tn/Tm

或1-Tj/Ti≤1-Tn/Tm

令ηmn表示热源Tm和Tn之间的可逆卡诺循环的效率,上式为ηi≤ηmn

(2)

(2)式代入

(1)式:

A/η≥

或1/η≥1/ηmn

或η≤ηmn

即任意循环可逆时,其效率不大于它所经历的最高温热源T和最低热源T之间的可逆卡诺循环的效率。

(2)任意循环不可逆时,可用一连微小的不可逆卡诺循环来代替,由卡诺定理知,任一微小的不可逆循环的效率必小于可逆的效率,即

ηi不<ηi≤ηmn(3)

对任一微小的不可逆卡诺循环,也有

A不/η不=∑Ai不/ηi不(4)

将(3)式代入(4)式可得:

η不≤ηmn

即任意不可逆循环的效率必小于它所经历的最高温源T和最低温热源T之间的可逆卡诺循环的效率。

综之,必η任意≤ηmn

即任意循环的效率不可能大于它所经历的最高温热源和最低温热源之间的可逆卡诺循环的效率。

6-8若准静态卡诺循环中的工作物质不是理想气体而服从状态方程p(v-b)=RT。

试证明这卡诺循环的效率公式仍为η=1-T2/T1(参考第五章习题13)。

此种物质的可逆卡诺循环如图。

等温膨胀过程中,该物质从高温热源T1吸热为

Q1=

=

=

等温压缩过程中,该物质向低温热源放热为

由第五章习题13知,该物质的绝热过程方程为

P(v-b)r=常数

利用p(v-b)=RT可得其绝热方程的另一表达式

T(v-b)r-1=常数

由绝热线23及14得

T1(v2-b)r-1=T2(v3-b)r-1

T1(v1-b)r-1=T2(v4-b)r-1

两式相比得

(v2-b)/(v1-b)=(v3-b)/(v4-b)

∴该物质卡诺循环的效率为

η=1-Q2/Q1=1-T2/T1

可见,工作于热源T1与T2之间的可逆机循环的效率总为1-T2/T1,与工作物质无关,这正是卡诺定理所指出的。

6-9

(1)利用(6.7)式证明,对一摩尔范德瓦耳斯气体有

=a/v2

(2)由

(1)证明:

u=u0+

(3)设CV为常数,证明上式可写

u=u′0+CVT-a/v

其中u0′=u0-CVT0+a/v0

(1)对一摩尔物质,(6.7)式为

一摩尔范氏气体的物态方程为

p=RT/(v-b)-a/v2

代入上式即得

=

(2)视u为T、v的函数,由

(1)得

du=

积分上式

即得

u=u0+

(3)当C为常数

(2)即得:

u=u0+CVT-CVT0+a/v0-a/v=u0′+CVT-a/v

其中u0′=u0-CVT0+a/v0

6-10设有一摩尔范德瓦耳斯气体,证明其静态绝热过程方程为

T(v-b)R/CV=常数

该气体的摩尔热容量C为常数

利用习题9的结果)

上题给出du=CVdT+a/v2d

由(6.15)式及p=RT/(v-b)-a/v2得:

TdS=du+pdv=CVdT+RT/(v-b)dv

由熵增原理知,可逆绝热过程中系统的熵不变,有

已知R/CV为常数,积分上式即得

T(v-b)R/CV=常数

6-11接上题,证明范德瓦耳斯气体准静态绝热过程方程又可写为

证明:

由一摩尔范德瓦耳斯气体的状态方程得:

代入上题结果

由于R是常量,所以上式可写作:

6-12证明:

范德瓦耳斯气体进行准静态绝热过程时,气体对外作功为:

设Cv为常数。

习题9给出,对摩尔范氏气体有:

当范氏气体由状态(T1、v1)变到状态(T2、v2),内能由u1变到u2,而Cv为常数时,上式为:

绝热过程中,Q=0,由热力学第一定律得

气体对外做的功:

-A=

6-13证明:

对一摩尔服从范德瓦耳斯方程的气体有下列关系:

(提示:

要利用范德瓦耳斯气体的如下关系:

证明:

习题9已证明,一摩尔范氏气体有:

视v为T、p的函数,有:

所以,1摩尔范氏气体在无穷小等压(dp=0)过程中,热力学第一定律可写为:

又由

可得:

代入上式即得:

6-14若用范德瓦耳斯气体模型,试求在焦耳测定气体内能实验中气体温度的变化,设气体定容摩尔热容量Cv为常数,摩尔体积在气体膨胀前后分别为v1、v2。

当1摩尔范氏气体由(T1、v1)变到(T2、v2),,而Cv为常数时,由9题结果知其内能的变化为:

焦耳自由膨胀实验中,A=0,且气体向真空的膨胀过程极短暂,可认为气体来不及与外界热交换,Q=0,由热力学第一定律得:

对于1摩尔范氏气体,由

(1)式则得:

6-15利用上题公式,求CO2在焦耳实验中温度的变化。

设气体的摩尔体积在膨胀前是2.01mol-1,在膨胀后为4.0mol-1。

已知CO2的摩尔热容量为3.38R,

a=3.6atm·

l2·

mol-2

取R=8.2×

10-2atm·

mol-2,利用上题公式并代入已知数据得:

负号表示范氏气体自由膨胀后温度降低。

(注:

可编辑下载,若有不当之处,请指正,谢谢!

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中教育 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1