最新沪科版学年八年级数学上册《轴对称与等腰三角形》章末检测卷及答案解析精编试题文档格式.docx

上传人:b****5 文档编号:17982716 上传时间:2022-12-12 格式:DOCX 页数:9 大小:107.46KB
下载 相关 举报
最新沪科版学年八年级数学上册《轴对称与等腰三角形》章末检测卷及答案解析精编试题文档格式.docx_第1页
第1页 / 共9页
最新沪科版学年八年级数学上册《轴对称与等腰三角形》章末检测卷及答案解析精编试题文档格式.docx_第2页
第2页 / 共9页
最新沪科版学年八年级数学上册《轴对称与等腰三角形》章末检测卷及答案解析精编试题文档格式.docx_第3页
第3页 / 共9页
最新沪科版学年八年级数学上册《轴对称与等腰三角形》章末检测卷及答案解析精编试题文档格式.docx_第4页
第4页 / 共9页
最新沪科版学年八年级数学上册《轴对称与等腰三角形》章末检测卷及答案解析精编试题文档格式.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

最新沪科版学年八年级数学上册《轴对称与等腰三角形》章末检测卷及答案解析精编试题文档格式.docx

《最新沪科版学年八年级数学上册《轴对称与等腰三角形》章末检测卷及答案解析精编试题文档格式.docx》由会员分享,可在线阅读,更多相关《最新沪科版学年八年级数学上册《轴对称与等腰三角形》章末检测卷及答案解析精编试题文档格式.docx(9页珍藏版)》请在冰豆网上搜索。

最新沪科版学年八年级数学上册《轴对称与等腰三角形》章末检测卷及答案解析精编试题文档格式.docx

C.50°

D.70°

5.如图,△ABC是等边三角形,BC⊥CD,且AC=CD,则∠BAD的度数为(  )

A.50°

B.45°

C.40°

D.35°

第5题图 

第6题图

6.如图,△ABC的周长为30cm,把△ABC的边AC对折,使顶点C与A重合,折痕交BC于D,交AC于E,连接AD,若AE=4cm,则△ABD的周长是(  )

A.20cmB.18cmC.15cmD.22cm

7.如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则下列四个结论正确的是(  )

①点P在∠A的平分线上;

②AS=AR;

③QP∥AR;

④△BRP≌△QSP.

A.①②③④B.①②

C.②③D.①③

第7题图

8.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于(  )

A.75°

B.15°

C.75°

或15°

D.30°

9.如图,在等边三角形ABC中,中线AD、BE交于F,则图中共有等腰三角形(  )

A.3个B.4个C.5个D.6个

 

第9题图 

第10题图

第11题图

10.如图,四边形ABCD中,∠BAD=120°

,∠B=∠D=90°

,在BC、CD上分别找一点M、N,使△AMN周长最小,此时∠AMN+∠ANM的度数为(  )

A.130°

B.120°

C.110°

D.100°

二、填空题(每小题5分,共20分)

11.小明沿倾斜角为30°

的山坡从山脚步行到山顶,共走了200米,则山的高度为________米.

12.△ABC的三边AB、BC、CA长分别为12、10、6,其三条角平分线的交点为O,则S△ABO∶S△BCO∶S△CAO=__________.

13.如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°

,则∠A=________.

 

第13题图 

第14题图

14.如图,在线段AB上取一点C(非中点),分别以AC、BC为边在AB的同侧作等边△ACD和等边△BCE,连接AE交CD于F,连接BD交CE于G,AE和BD交于点H,则下列结论正确的是________(填序号).

①AE=DB;

②不另外添加线,图中全等三角形只有1对;

③若连接FG,则△CFG是等边三角形;

④若连接CH,则CH平分∠FHG.

三、解答题(共90分)

15.(8分)如图所示是一个8×

10的正方形格纸,在△ABC中,A点坐标为(-2,1).

(1)△ABC和△A′B′C′满足什么几何变换(直接写出答案)?

(2)作△A′B′C′关于x轴的对称图形△A″B″C″;

(3)求A″、B″、C″三点的坐标(直接写出答案).

 

16.(8分)已知点A(a+b,2),点B(-b,a-b)关于y轴对称,求ba的值.

17.(8分)如图,已知AB=AC=AD,且AD∥BC,求证:

∠C=2∠D.

18.(8分)如图,学校要在两条小路OM和ON之间的S区域规划修建一处“英语角”,按照设计要求,英语角C到两栋教学楼A,B的距离必须相等,到两条小路的距离也必须相等,则“英语角”应修建在什么位置?

请在图上标出它的位置(尺规作图,保留痕迹).

19.(10分)如图,将长方形纸片ABCD沿BD所在直线对折,使点A落在平面上的F点处,DF交BC于点E.

(1)求证:

△DCE≌△BFE;

(2)若EF=2,∠ADB=30°

,求DF的长.

20.(10分)如图,△ABC中,BA=BD,CA=CE,∠BAC=100°

,求∠DAE的度数.

21.(12分)如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连接OB,OC,若△ADE的周长为6cm,△OBC的周长为16cm.

(1)求线段BC的长;

(2)连接OA,求线段OA的长;

(3)若∠BAC=120°

22.(12分)如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接点D、E、F,得到△DEF为等边三角形.

(1)试证明△AEF≌△CDE;

(2)△ABC是等边三角形吗?

请说明你的理由.

23.(14分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,点Q同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.

(1)当∠BQD=30°

时,求AP的长;

(2)当运动过程中线段ED的长是否发生变化?

如果不变,求出线段ED的长;

如果变化,请说明理由.

参考答案与解析

1.A 2.D 3.A 4.B 5.B 6.D 7.A 8.C

9.D 解析:

△CDE,△DEF,△ADE,△BDE,△ABF,△ABC都是等腰三角形,共6个.故选D.

10.B 解析:

如图,作点A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°

,∴∠AA′M+∠A″=180°

-∠BAD=60°

.由对称可得∠MA′A=∠MAA′,∠NAD=∠A″.又∵∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×

60°

=120°

.故选B.

11.100 12.6∶5∶3

13.60°

 解析:

∵DE是线段BC的垂直平分线,∴BE=CE,∴∠B=∠BCE=40°

.∵CE平分∠ACB,∴∠ACB=2∠BCE=80°

,∴∠A=180°

-∠B-∠ACB=60°

.

14.①③④ 解析:

∵△ACD与△BCE是等边三角形,∴AC=DC,EC=BC,∠ACD=∠BCE=60°

,∴∠ACE=∠BCD.在△ACE和△DCB中,∵

∴△ACE≌△DCB(SAS),∴AE=DB,∠CAE=∠CDB.∵∠ACD=∠BCE=60°

,∴∠DCE=60°

,∴∠ACD=∠DCE.在△ACF与△DCG中,∵

∴△ACF≌△DCG.同理可得△BCG≌△ECF,故①正确,②错误;

∵△ACF≌△DCG,∴CF=CG.∵∠FCG=60°

,∴△FCG是等边三角形,故③正确;

如图,过C作CM⊥AE于M,CN⊥BD于N.∴∠AMC=∠DNC=90°

.在△ACM与△DCN中,∵

∴△ACM≌△DCN,∴CM=CN,∴CH平分∠FHG,故④正确.故答案为①③④.

15.解:

(1)轴对称;

(2分)

(2)如图所示;

(5分)

(3)A″(2,-1),B″(1,-2),C″(3,-3).(8分)

16.解:

∵点A(a+b,2),点B(-b,a-b)关于y轴对称,∴

(4分)解得

∴ba=(-2)0=1.(8分)

17.证明:

∵AB=AC,∴∠ABC=∠C.∵AB=AD,∴∠ABD=∠D.∵AD∥BC,∴∠D=∠CBD.(3分)∴∠ABC=∠ABD+∠CBD=2∠D,∴∠C=2∠D.(8分)

18.解:

如图所示,作∠NOM的平分线和线段AB的垂直平分线,它们的交点为C,则C点就是英语角的位置.(8分)

19.

(1)证明:

∵四边形ABCD是长方形,∴AB=CD,∠A=∠C=∠ADC=90°

.由折叠的性质可得AB=FB,∠F=∠A=90°

.∴DC=BF,∠C=∠F.在△DCE和△BFE中,∵

∴△DCE≌△BFE(AAS);

(2)解:

由折叠的性质可得∠BDF=∠ADB=30°

,∴∠CDE=∠ADC-∠ADB-∠BDF=30°

.由

(1)可知△DCE≌△BFE,∴CE=FE=2.在Rt△DCE中,∠CDE=30°

,∴DE=2CE=4,∴DF=DE+EF=4+2=6.(10分)

20.解:

∵BA=BD,∴∠BAD=∠BDA=

(180°

-∠B)=90°

∠B.∵CA=CE,∴∠CAE=∠CEA=

-∠C)=90°

∠C.(4分)∴∠DAE=180°

-∠AED-∠ADE=180°

-(∠BDA+∠CEA)=180°

(∠B+∠C)=

-∠BAC)=

-100°

)=40°

.(10分)

21.解:

(1)∵l1是AB边的垂直平分线,∴DA=DB.∵l2是AC边的垂直平分线,∴EA=EC,∴BC=BD+DE+EC=DA+DE+EA=6cm;

(4分)

(2)∵l1是AB边的垂直平分线,∴OA=OB.∵l2是AC边的垂直平分线,∴OA=OC.∴OA=OB=OC.∵OB+OC+BC=16cm,BC=6cm,∴OA=OB=OC=5cm;

(8分)

(3)∵∠BAC=120°

,∴∠ABC+∠ACB=60°

.由

(1)可知DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC-∠BAD-∠EAC=∠BAC-∠ABC-∠ACB=120°

-60°

=60°

.(12分)

22.解:

(1)∵BF=AC,AB=AE,∴AF=CE.∵△DEF是等边三角形,∴EF=DE.又∵AE=CD,∴△AEF≌△CDE(SSS);

(2)△ABC是等边三角形.(6分)理由如下:

(1)可知△AEF≌△CDE,∴∠FEA=∠EDC,∴∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF.又∵△DEF是等边三角形,∴∠DEF=60°

,∴∠BCA=60°

.同理可得∠BAC=60°

,∴∠ABC=60°

,∴△ABC是等边三角形.(12分)

23.解:

(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°

.∵∠BQD=30°

,∴∠QPC=90°

.(2分)设AP=x,则PC=6-x,QB=x,∴QC=QB+BC=6+x.(4分)∵在Rt△QCP中,∠CQD=30°

,∴PC=

QC,即6-x=

(6+x),解得x=2,∴AP=2;

(6分)

(2)当点P、Q运动时,线段DE的长度不会改变.(7分)如图,过P作PF∥BC交AB于F,(8分)则∠1=∠2.∵△ABC为等边三角形,∴∠ABC=∠C=60°

.∵PF∥BC,∴∠AFP=∠ABC=60°

,∠APF=∠C=60°

,∴△APF为等边三角形,∴AP=FP.∵PE⊥AB,∴AE=FE=

AF,即AF=2EF.(10分)又∵P、Q点运动速度相同,∴AP=BQ,∴FP=BQ.在△BDQ和△FDP中,

∴△BDQ≌△FDP(AAS),∴DB=DF,∴BF=2DF.(12分)∵AF+BF=AB,∴2EF+2DF=AB,∴EF+DF=

AB,即DE=

AB=

×

6=3.(14分)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 公务员考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1