最新沪科版学年八年级数学上册《轴对称与等腰三角形》章末检测卷及答案解析精编试题文档格式.docx
《最新沪科版学年八年级数学上册《轴对称与等腰三角形》章末检测卷及答案解析精编试题文档格式.docx》由会员分享,可在线阅读,更多相关《最新沪科版学年八年级数学上册《轴对称与等腰三角形》章末检测卷及答案解析精编试题文档格式.docx(9页珍藏版)》请在冰豆网上搜索。
C.50°
D.70°
5.如图,△ABC是等边三角形,BC⊥CD,且AC=CD,则∠BAD的度数为( )
A.50°
B.45°
C.40°
D.35°
第5题图
第6题图
6.如图,△ABC的周长为30cm,把△ABC的边AC对折,使顶点C与A重合,折痕交BC于D,交AC于E,连接AD,若AE=4cm,则△ABD的周长是( )
A.20cmB.18cmC.15cmD.22cm
7.如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则下列四个结论正确的是( )
①点P在∠A的平分线上;
②AS=AR;
③QP∥AR;
④△BRP≌△QSP.
A.①②③④B.①②
C.②③D.①③
第7题图
8.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于( )
A.75°
B.15°
C.75°
或15°
D.30°
9.如图,在等边三角形ABC中,中线AD、BE交于F,则图中共有等腰三角形( )
A.3个B.4个C.5个D.6个
第9题图
第10题图
第11题图
10.如图,四边形ABCD中,∠BAD=120°
,∠B=∠D=90°
,在BC、CD上分别找一点M、N,使△AMN周长最小,此时∠AMN+∠ANM的度数为( )
A.130°
B.120°
C.110°
D.100°
二、填空题(每小题5分,共20分)
11.小明沿倾斜角为30°
的山坡从山脚步行到山顶,共走了200米,则山的高度为________米.
12.△ABC的三边AB、BC、CA长分别为12、10、6,其三条角平分线的交点为O,则S△ABO∶S△BCO∶S△CAO=__________.
13.如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°
,则∠A=________.
第13题图
第14题图
14.如图,在线段AB上取一点C(非中点),分别以AC、BC为边在AB的同侧作等边△ACD和等边△BCE,连接AE交CD于F,连接BD交CE于G,AE和BD交于点H,则下列结论正确的是________(填序号).
①AE=DB;
②不另外添加线,图中全等三角形只有1对;
③若连接FG,则△CFG是等边三角形;
④若连接CH,则CH平分∠FHG.
三、解答题(共90分)
15.(8分)如图所示是一个8×
10的正方形格纸,在△ABC中,A点坐标为(-2,1).
(1)△ABC和△A′B′C′满足什么几何变换(直接写出答案)?
(2)作△A′B′C′关于x轴的对称图形△A″B″C″;
(3)求A″、B″、C″三点的坐标(直接写出答案).
16.(8分)已知点A(a+b,2),点B(-b,a-b)关于y轴对称,求ba的值.
17.(8分)如图,已知AB=AC=AD,且AD∥BC,求证:
∠C=2∠D.
18.(8分)如图,学校要在两条小路OM和ON之间的S区域规划修建一处“英语角”,按照设计要求,英语角C到两栋教学楼A,B的距离必须相等,到两条小路的距离也必须相等,则“英语角”应修建在什么位置?
请在图上标出它的位置(尺规作图,保留痕迹).
19.(10分)如图,将长方形纸片ABCD沿BD所在直线对折,使点A落在平面上的F点处,DF交BC于点E.
(1)求证:
△DCE≌△BFE;
(2)若EF=2,∠ADB=30°
,求DF的长.
20.(10分)如图,△ABC中,BA=BD,CA=CE,∠BAC=100°
,求∠DAE的度数.
21.(12分)如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连接OB,OC,若△ADE的周长为6cm,△OBC的周长为16cm.
(1)求线段BC的长;
(2)连接OA,求线段OA的长;
(3)若∠BAC=120°
22.(12分)如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接点D、E、F,得到△DEF为等边三角形.
(1)试证明△AEF≌△CDE;
(2)△ABC是等边三角形吗?
请说明你的理由.
23.(14分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,点Q同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°
时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?
如果不变,求出线段ED的长;
如果变化,请说明理由.
参考答案与解析
1.A 2.D 3.A 4.B 5.B 6.D 7.A 8.C
9.D 解析:
△CDE,△DEF,△ADE,△BDE,△ABF,△ABC都是等腰三角形,共6个.故选D.
10.B 解析:
如图,作点A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°
,∴∠AA′M+∠A″=180°
-∠BAD=60°
.由对称可得∠MA′A=∠MAA′,∠NAD=∠A″.又∵∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×
60°
=120°
.故选B.
11.100 12.6∶5∶3
13.60°
解析:
∵DE是线段BC的垂直平分线,∴BE=CE,∴∠B=∠BCE=40°
.∵CE平分∠ACB,∴∠ACB=2∠BCE=80°
,∴∠A=180°
-∠B-∠ACB=60°
.
14.①③④ 解析:
∵△ACD与△BCE是等边三角形,∴AC=DC,EC=BC,∠ACD=∠BCE=60°
,∴∠ACE=∠BCD.在△ACE和△DCB中,∵
∴△ACE≌△DCB(SAS),∴AE=DB,∠CAE=∠CDB.∵∠ACD=∠BCE=60°
,∴∠DCE=60°
,∴∠ACD=∠DCE.在△ACF与△DCG中,∵
∴△ACF≌△DCG.同理可得△BCG≌△ECF,故①正确,②错误;
∵△ACF≌△DCG,∴CF=CG.∵∠FCG=60°
,∴△FCG是等边三角形,故③正确;
如图,过C作CM⊥AE于M,CN⊥BD于N.∴∠AMC=∠DNC=90°
.在△ACM与△DCN中,∵
∴△ACM≌△DCN,∴CM=CN,∴CH平分∠FHG,故④正确.故答案为①③④.
15.解:
(1)轴对称;
(2分)
(2)如图所示;
(5分)
(3)A″(2,-1),B″(1,-2),C″(3,-3).(8分)
16.解:
∵点A(a+b,2),点B(-b,a-b)关于y轴对称,∴
(4分)解得
∴ba=(-2)0=1.(8分)
17.证明:
∵AB=AC,∴∠ABC=∠C.∵AB=AD,∴∠ABD=∠D.∵AD∥BC,∴∠D=∠CBD.(3分)∴∠ABC=∠ABD+∠CBD=2∠D,∴∠C=2∠D.(8分)
18.解:
如图所示,作∠NOM的平分线和线段AB的垂直平分线,它们的交点为C,则C点就是英语角的位置.(8分)
19.
(1)证明:
∵四边形ABCD是长方形,∴AB=CD,∠A=∠C=∠ADC=90°
.由折叠的性质可得AB=FB,∠F=∠A=90°
.∴DC=BF,∠C=∠F.在△DCE和△BFE中,∵
∴△DCE≌△BFE(AAS);
(2)解:
由折叠的性质可得∠BDF=∠ADB=30°
,∴∠CDE=∠ADC-∠ADB-∠BDF=30°
.由
(1)可知△DCE≌△BFE,∴CE=FE=2.在Rt△DCE中,∠CDE=30°
,∴DE=2CE=4,∴DF=DE+EF=4+2=6.(10分)
20.解:
∵BA=BD,∴∠BAD=∠BDA=
(180°
-∠B)=90°
-
∠B.∵CA=CE,∴∠CAE=∠CEA=
-∠C)=90°
∠C.(4分)∴∠DAE=180°
-∠AED-∠ADE=180°
-(∠BDA+∠CEA)=180°
=
(∠B+∠C)=
-∠BAC)=
-100°
)=40°
.(10分)
21.解:
(1)∵l1是AB边的垂直平分线,∴DA=DB.∵l2是AC边的垂直平分线,∴EA=EC,∴BC=BD+DE+EC=DA+DE+EA=6cm;
(4分)
(2)∵l1是AB边的垂直平分线,∴OA=OB.∵l2是AC边的垂直平分线,∴OA=OC.∴OA=OB=OC.∵OB+OC+BC=16cm,BC=6cm,∴OA=OB=OC=5cm;
(8分)
(3)∵∠BAC=120°
,∴∠ABC+∠ACB=60°
.由
(1)可知DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC-∠BAD-∠EAC=∠BAC-∠ABC-∠ACB=120°
-60°
=60°
.(12分)
22.解:
(1)∵BF=AC,AB=AE,∴AF=CE.∵△DEF是等边三角形,∴EF=DE.又∵AE=CD,∴△AEF≌△CDE(SSS);
(2)△ABC是等边三角形.(6分)理由如下:
由
(1)可知△AEF≌△CDE,∴∠FEA=∠EDC,∴∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF.又∵△DEF是等边三角形,∴∠DEF=60°
,∴∠BCA=60°
.同理可得∠BAC=60°
,∴∠ABC=60°
,∴△ABC是等边三角形.(12分)
23.解:
(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°
.∵∠BQD=30°
,∴∠QPC=90°
.(2分)设AP=x,则PC=6-x,QB=x,∴QC=QB+BC=6+x.(4分)∵在Rt△QCP中,∠CQD=30°
,∴PC=
QC,即6-x=
(6+x),解得x=2,∴AP=2;
(6分)
(2)当点P、Q运动时,线段DE的长度不会改变.(7分)如图,过P作PF∥BC交AB于F,(8分)则∠1=∠2.∵△ABC为等边三角形,∴∠ABC=∠C=60°
.∵PF∥BC,∴∠AFP=∠ABC=60°
,∠APF=∠C=60°
,∴△APF为等边三角形,∴AP=FP.∵PE⊥AB,∴AE=FE=
AF,即AF=2EF.(10分)又∵P、Q点运动速度相同,∴AP=BQ,∴FP=BQ.在△BDQ和△FDP中,
∴△BDQ≌△FDP(AAS),∴DB=DF,∴BF=2DF.(12分)∵AF+BF=AB,∴2EF+2DF=AB,∴EF+DF=
AB,即DE=
AB=
×
6=3.(14分)