PID控制器设计与仿真概述Word文档格式.docx

上传人:b****4 文档编号:17979292 上传时间:2022-12-12 格式:DOCX 页数:10 大小:78.67KB
下载 相关 举报
PID控制器设计与仿真概述Word文档格式.docx_第1页
第1页 / 共10页
PID控制器设计与仿真概述Word文档格式.docx_第2页
第2页 / 共10页
PID控制器设计与仿真概述Word文档格式.docx_第3页
第3页 / 共10页
PID控制器设计与仿真概述Word文档格式.docx_第4页
第4页 / 共10页
PID控制器设计与仿真概述Word文档格式.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

PID控制器设计与仿真概述Word文档格式.docx

《PID控制器设计与仿真概述Word文档格式.docx》由会员分享,可在线阅读,更多相关《PID控制器设计与仿真概述Word文档格式.docx(10页珍藏版)》请在冰豆网上搜索。

PID控制器设计与仿真概述Word文档格式.docx

这种控制方式适合相当多的被控对象,目前仍然广泛地运用于多数自动控制系统。

1、开环控制系统

  开环控制系统(open-loopcontrolsystem)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

 2、闭环控制系统

  闭环控制系统(closed-loopcontrolsystem)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。

闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(NegativeFeedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。

闭环控制系统的例子很多。

比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。

如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。

另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。

  3、阶跃响应

阶跃响应是指将一个阶跃输入(stepfunction)加到系统上时,系统的输出。

稳态误差是指系统的响应进入稳态后﹐系统的期望输出与实际输出之差。

控制系统的性能可以用稳、准、快三个字来描述。

稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的﹔准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-stateerror)描述,它表示系统输出稳态值与期望值之差﹔快是指控制系统响应的快速性,通常用上升时间来定量描述。

PID控制系统的特点

它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ti和Td)即可。

在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。

首先,PID应用范围广。

虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。

 其次,PID参数较易整定。

也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。

如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。

第三,PID控制器

在实践中也不断的得到改进,下面两个改进的例子。

 在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。

由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰。

PID参数自整定就是为了处理PID参数整定这个问题而产生的。

现在,自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准。

  在一些情况下针对特定的系统设计的PID控制器控制得很好,但它们仍存在一些问题需要解决:

  如果自整定要以模型为基础,为了PID参数的重新整定在线寻找和保持好过程模型是较难的。

闭环工作时,要求在过程中插入一个测试信号。

这个方法会引起扰动,所以基于模型的PID参数自整定在工业应用不是太好。

  如果自整定是基于控制律的,经常难以把由负载干扰引起的影响和过程动态特性变化引起的影响区分开来,因此受到干扰的影响控制器会产生超调,产生一个不必要的自适应转换。

另外,由于基于控制律的系统没有成熟的稳定性分析方法,参数整定可靠与否存在很多问题。

  因此,许多自身整定参数的PID控制器经常工作在自动整定模式而不是连续的自身整定模式。

自动整定通常是指根据开环状态确定的简单过程模型自动计算PID参数。

  PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作地不是太好。

最重要的是,如果PID控制器不能控制复杂过程,无论怎么调参数都没用。

虽然有这些缺点,PID控制器是最简单的有时却是最好的控制器。

PID控制系统的适用性

 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

自动控制系统可分为开环控制系统和闭环控制系统。

一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。

控制器的输出经过输出接口、执行机构,加到被控系统上;

控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。

不同的控制系统,其传感器、变送器、执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。

还有可以实现PID控制功能的控制器,如Rockwell的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

PID控制原理

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

1、比例(P)控制:

比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-stateerror)。

 比例调节作用:

是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

 2、积分(I)控制:

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(SystemwithSteady-stateError)。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

 积分调节作用:

是使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。

反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。

积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。

  3、微分(D)控制:

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

 微分调节作用:

微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。

因此,可以改善系统的动态性能。

在微分时间选择合适情况下,可以减少超调,减少调节时间。

微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。

此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。

微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。

PID控制实现

PID的反馈逻辑

  各种变频器的反馈逻辑称谓各不相同,甚至有类似的称谓而含义相反的情形。

系统设计时应以所选用变频器的说明书介绍为准。

所谓反馈逻辑,是指被控物理量经传感器检测到的反馈信号对变频器输出频率的控制极性。

例如中央空调系统中,用回水温度控制调节变频器的输出频率和水泵电机的转速。

冬天制热时,如果回水温度偏低,反馈信号减小,说明房间温度低,要求提高变频器输出频率和电机转速,加大热水的流量;

而夏天制冷时,如果回水温度偏低,反馈信号减小,说明房间温度过低,可以降低变频器的输出频率和电机转速.减少冷水的流量。

由上可见,同样是温度偏低,反馈信号减小,但要求变频器的频率变化方向却是相反的。

这就是引入反馈逻辑的原由。

打开PID功能

  要实现闭环的PID控制功能,首先应将PID功能预置为有效。

具体方法有两种:

一是通过变频器的功能参数码预置,例如,康沃CVF-G2系列变频器,将参数H-48设为O时,则无PID功能;

设为1时为普通PID控制;

设为2时为恒压供水PID。

二是由变频器的外接多功能端子的状态决定。

例如安川CIMR-G7A系列变频器,如图1所示,在多功能输入端子Sl-S10中任选一个,将功能码H1-01~H1-10(与端子S1-S10相对应)预置为19,则该端子即具有决定PI[)控制是否有效的功能,该端子与公共端子SC“ON”时无效,“OFF”时有效。

应注意的是.大部分变频器兼有上述两种预置方式,但有少数品牌的变频器只有其中的一种方式。

  在一些控制要求不十分严格的系统中,有时仅使用PI控制功能、不启动D功能就能满足需要,这样的系统调试过程比较简单。

目标信号与反馈信号

  欲使变频系统中的某一个物理量稳定在预期的目标值上,变频器的PID功能电路将反馈信号与目标信号不断地进行比较,并根据比较结果来实时地调整输出频率和电动机的转速。

所以,变频器的PID控制至少需要两种控制信号:

目标信号和反馈信号。

这里所说的目标信号是某物理量预期稳定值所对应的电信号,亦称目标值或给定值;

而该物理量通过传感器测量到的实际值对应的电信号称为反馈信号,亦称反馈量或当前值。

PID控制的功能示意图见图2。

图中有一个PID开关。

可通过变频器的功能参数设置使PID功能有效或无效。

PID功能有效时,由PID电路决定运行频率;

PID功能无效时,由频率设定信号决定运行频率。

PID开关、动作选择开关和反馈信号切换开关均由功能参数的设置决定其工作状态。

目标值给定

  如何将目标值(目标信号)的命令信息传送给变频器,各种变频器选择了不同的方法,而归结起来大体上有如下两种方案:

一是自动转换法,即变频器预置PID功能有效时,其开环运行时的频率给定功能自动转为目标值给定.如表2中的安川CIMR-G7A与富士P11S变频器。

二是通道选择法,如表2中的康沃CVF-G2、森兰SB12和普传P17000系列变频器。

  以上介绍了目标信号的输入通道,接着要确定目标值的大小。

由于目标信号和反馈信号通常不是同一种物理量。

难以进行直接比较,所以,大多数变频器的目标信号都用传感器量程的百分数来表示。

例如,某储气罐的空气压力要求稳定在1.2MPa,压力传感器的量程为2MPa,则与1.2MPa对应的百分数为60%,目标值就是60%。

而有的变频器的参数列表中,有与传感器量程上下限值对应的参数,例如富士P11S变频器,将参数E40(显示系数A)设为2,即压力传感器的量程上限2MPa:

参数E41(显示系数B)设为0,即量程下限为0,则目标值为1.2。

即压力稳定值为1.2MPa。

目标值即是预期稳定值的绝对值。

反馈信号的连接

  各种变频器都有若干个频率给定输入端,在这些输入端子中,如果已经确定一个为目标信号的输入通道,则其他输入端子均可作为反馈信号的输入端。

可通过相应的功能参数码选择其中的使用。

PID参数的预置与调整

比例增益P

  变频器的PID功能是利用目标信号和反馈信号的差值来调节输出频率的,一方面,我们希望目标信号和反馈信号无限接近,即差值很小,从而满足调节的精度:

另一方面,我们又希望调节信号具有一定的幅度,以保证调节的灵敏度。

解决这一矛盾的方法就是事先将差值信号进行放大。

比例增益P就是用来设置差值信号的放大系数的。

任何一种变频器的参数P都给出一个可设置的数值范围,一般在初次调试时,P可按中间偏大值预置.或者暂时默认出厂值,待设备运转时再按实际情况细调。

积分时间

  如上所述.比例增益P越大,调节灵敏度越高,但由于传动系统和控制电路都有惯性,调节结果达到最佳值时不能立即停止,导致“超调”,然后反过来调整,再次超调,形成振荡。

为此引入积分环节I,其效果是,使经过比例增益P放大后的差值信号在积分时间内逐渐增大(或减小),从而减缓其变化速度,防止振荡。

但积分时间I太长,又会当反馈信号急剧变化时,被控物理量难以迅速恢复。

因此,I的取值与拖动系统的时间常数有关:

拖动系统的时间常数较小时,积分时间应短些;

拖动系统的时间常数较大时,积分时间应长些。

微分时间D

  微分时间D是根据差值信号变化的速率,提前给出一个相应的调节动作,从而缩短了调节时间,克服因积分时间过长而使恢复滞后的缺陷。

D的取值也与拖动系统的时间常数有关:

拖动系统的时间常数较小时,微分时间应短些;

反之,拖动系统的时间常数较大时,微分时间应长些。

P、I、D参数的调整原则

P、I、D参数的预置是相辅相成的,运行现场应根据实际情况进行如下细调:

被控物理量在目标值附近振荡,首先加大积分时间I,如仍有振荡,可适当减小比例增益P。

被控物理量在发生变化后难以恢复,首先加大比例增益P,如果恢复仍较缓慢,可适当减小积分时间I,还可加大微分时间D。

3.PID控制器设计

3.1lm741单运放集成电路简介及管脚说明

(1)LM741(单运放)是高增益运算放大器,用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。

这些类型还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。

(2)lm741引脚图:

引脚说明:

1.偏置2.反相输入端3.正向输入端4.电源负极

5.偏置6.输出端7.电源正极8.地线

主要参数:

功耗:

85mW总电压:

30V电压增益:

86dB

转换速率SR:

0.5V/μs共模抑制比CMRR:

70dB

输入阻抗:

300kΩ失调电压:

7.5mV

3.2PID控制器电路原理图及分析

比例积分微分环节的传递函数为:

Uo(s)/Ui(s)=Kp+1/TiS+TdS

原理图为:

阶跃响应图为:

3.2PID控制器电路图及性能测试

Kp=R1/R0,T1=(R1+R0)C1,Td=R2R3C2/(R1+R0)

实验参数取:

R0=100K可调,R1=100K,R2=100K,R3=10K,R4=1K,C1=1uF,C2=10uF,R=10K或100K

对应理想的和实际的比例积分微分环节的阶跃响应图为:

实际使用的电路图为:

性能分析:

实验时可通过输入一电压值,用示波器双踪通道分别观察和对比输入输出的波形,是否符合比例积分微分关系。

3.4硬件电路的检测与调试

按照所设计的PID电路图,将各元件固定在面包板上(注意LM741各引脚的连接及接地问题),即为PID控制器的核心部分。

另外,PID控制器还涉及电源部分,由于LM741需接正负电源,而实际中没有负的电源,所以用两个(0~12V)的电源A,B.其中A的0V端与B的12V端相接,这样A的0V和12V端仍旧对应0V和12V。

而B的0V和12V端则对应-12V和0V。

把+/-12V端与LM741相应引脚相连接。

硬件电路图片为:

检测及实验现象:

将电源、地线接好,从试验台上的已有的信号发生器上输出与阶跃信号进PID控制器,即输入Ui。

然后将输入端和输出端分别接至双踪示波器的两通道中,观察到的输出波形近似是一条斜线,即显示的是积分性质,微分性质没有显现。

调试:

影响实验现象的因素很多,与信号发生器产生的波形是不是精确的阶跃波、连接电路的问题,电路中元件等都有关系,所以紧紧通过调节、改变电路总共各元件的参数值也很难达到理想的效果。

4PID控制器Matlab仿真

4.1MATLAB在自动控制系统中的应用简介

MATLAB是目前比较流行的控制系统仿真软件。

1980年美国的CleveMoler博士研制的MATLAB环境(语言)对控制系统的理论及计算机辅助设计技术起到了巨大的推动作用。

MATLAB的使用极其容易,它不要求使用者具备高深的数学与程序语言的知识,不需要使用者深刻了解算法与编程技巧,且提供了丰富的矩阵处理功能。

4.2SIMULINK简介

使用MATLAB对控制系统进行计算机仿真的主要方法是:

以控制系统的传递函数为基础,使用MATLAB的Simulink工具箱对其进行计算机仿真研究。

简介

  Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。

在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。

Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。

同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。

功能

  Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。

Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。

为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI),这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。

  Simulink&

reg;

是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。

对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。

.

构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。

Simulink与MATLAB&

紧密集成,可以直接访问MATLAB大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。

4.2仿真

由于此次设计的控制系统连线较为简单,通过观察实验结果是否符合比例积分微分关系,来检测控制系统的设计是否准确。

如果设计不正却,调整也较为简单,所以没有用到MATLAB仿真软件。

但若设计一个大型较为复杂的控制系时,在连接线路前,要先用MATLAB软件进行仿真,不断调整,直到仿真结果符合要求。

然后根据调整后的电路图进行连线,就是所需的控制系统。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 职业技术培训

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1