国家财政收入的影响因素Word文件下载.docx

上传人:b****5 文档编号:17914364 上传时间:2022-12-12 格式:DOCX 页数:11 大小:66.75KB
下载 相关 举报
国家财政收入的影响因素Word文件下载.docx_第1页
第1页 / 共11页
国家财政收入的影响因素Word文件下载.docx_第2页
第2页 / 共11页
国家财政收入的影响因素Word文件下载.docx_第3页
第3页 / 共11页
国家财政收入的影响因素Word文件下载.docx_第4页
第4页 / 共11页
国家财政收入的影响因素Word文件下载.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

国家财政收入的影响因素Word文件下载.docx

《国家财政收入的影响因素Word文件下载.docx》由会员分享,可在线阅读,更多相关《国家财政收入的影响因素Word文件下载.docx(11页珍藏版)》请在冰豆网上搜索。

国家财政收入的影响因素Word文件下载.docx

图1:

X1-Y散点图

图2:

X2-Y散点图

图3:

X3-Y散点图

图4:

X4-Y散点图

图5:

X5-Y散点图

观察图5明显可知,散点图的最右边有一个异常点:

1981年就业人口攀升为73280,较之前有大幅度增长,但财政收入明显地低于预测值,为使个别数据不致影响整个模型,我们将该异常数据去掉。

得到下图5-1:

图5-1:

去掉异常点的X5-Y散点图

图6:

X6-Y散点图

2、模型的建立

通过对以上的散点图观察大体可知,财政收入Y与X1-6呈线性关系,所以设多元线性回归模型为:

3、模型的求解

首先,需要剔除掉因为1981年就业人口对财政收入影响异常的特殊点(见图5-1),然后利用EXCEL中的数据分析的分析工具“回归”对数据进行了分析求解,得到多元线性回归模型的回归系数估计值及置信区间,并检验了

.结果见下表1:

表1:

模型1的计算结果

参数

参数估计值

置信区间

g

-15.5344

-366.5816335.5127

a

0.5100

0.23010.7898

b

-0.0259

-0.07690.0251

c

-0.5905

-0.9901-0.1908

d

0.0113

-0.00280.0254

e

-0.0230

-0.04920.0032

f

0.3419

-0.03870.7225

R2=0.9840

表1显示,

=0.9840指因变量Y(财政收入)的98.40%可有模型

(1)自变量来解释,且数值十分接近1,且通过EXCEL分析所给的数据做出1953-1980年实际财政收入(Y)与预测值(Y1)的折线拟合图,见下图7:

图7可用于模型的检验

图7

所以模型

(1)从整体来看是可以用的。

由表1可知,a=0.51,b=-0.0295,c=-0.5905,d=0.0113,e=-0.123,f=0.3419,从而得出多元线性回归模型为:

4、模型的检验

通过EXCEL计算的出

表2

 

df

SS

MS

F

SignificanceF

回归分析

6

1329611

221601.9

225.8953

1.30729E-18

残差

22

21581.86

980.9938

总计

28

1351193

表3

标准误差

tStat

P-value

Intercept

169.2713

-0.09177

0.927709

XVariable1

0.134946

3.779191

0.001032

XVariable2

0.024599

-1.0537

0.303455

XVariable3

0.192694

-3.06429

0.005679

XVariable4

0.00682

1.65602

0.111913

XVariable5

0.012646

-1.81817

0.082681

XVariable6

0.183515

1.86293

0.075879

通过观察以上两表可知,F=225.8953,通过F-检验及t-检验,可知解释变量对被解释变量有显著的解释性能力。

所以该模型是可以使用的。

5、结果分析

上网查阅了2000年的国民收入、工业总产值、农业总产值、总人口、就业人口、固定资产投资,代入多元线性回归模型,结果如下:

表22000年财政收入预测值与实际值对比数据来源自《CNKI中国统计年鉴数据库》

年份

2000

98000.5

75710.69

13873.6

126743

72116.77

32917.7

财政收入(预测值)

财政收入(实际值):

7570.2077

13395.23

从表8可以看到,2000年预测值与实际值和预测值都相差较大,原因不一定是模型建立的偏差大,还有可能是其他原因,如在查阅数据时,我们就发现了2000年的工业总产值数据注明了“1990年不变价格”,而其余数据没有此说明项;

且1980年后国家实行了改革开放的经济政策,经济的发展规律发生了很大的变化,用1980年以前的数据建立起来的模型去预测1980年后的一些经济数据自然会有较大的偏差。

并且,在固定资产投资一栏,我们查到了非常详细的分类,固定资产投资资金来源中国家预算内资金,固定资产投资资金来源中国内贷款,固定资产投资资金来源中自筹和其他资金等备注,而题目并未给出,这给我们筛选数据带来了极大的困难。

总的来说,模型对于1952-1980年的经济数据来说,依然有一定的参考价值和预测价值,但由于各种方面的原因与因素,对于1990年和2000年预测值与实际值的匹配程度是有限。

六、模型的评价

·

优点

1、该模型的决定系数

较高,且都是一次项,计算方便。

2、剔除了所给数据的异常点,对建立模型和计算预测值有很大的帮助。

缺点

对1981年之后的数据预测值逐渐产生偏差,只适用于预测所用数据的时间段,有效的预测时间段较段。

七、模型的推广与改进

从上文的分析来看,我们认为1981年后,由于我国实行的改革开放取得了显著地成果,生活水平、物价、科技、通货膨胀等因素极大的影响了我们的预测数据,若补充上消费水平指数(CPI)等数据,模型的拟合效果应该会更准确,对以后时间段的预测应该会更长,偏差也会更小,

八、参考文献

[1]韩中庚,《数学建模方法及其应用》,高等教育出版社,北京,2006

[2]姜启源,谢金星,《数学模型(第三版)》,高等教育出版社,北京,2004

[3]JohnO.Rawlings,SastryG.Pantula,DavidA.DickeyAppliedRegressionAnalysis:

AResearchTool(《应用回归分析(英文版)》)[M].NewYork,USA:

Springer,1998

[4]李子奈《计量经济学教程》

[5]CNKI中国统计年鉴数据库

九、附录

附录一:

原始数据表

国民收入(亿元)

工业总产值(亿元)

农业总产值(亿元)

总人口(万人)

就业人口(万人)

固定资产投资(亿元)

财政收入(亿元)

1952

598

349

461

57482

20729

44

184

1953

586

455

475

58796

21364

89

216

1954

707

520

491

60266

21832

97

248

1955

737

558

529

61465

22328

98

254

1956

825

715

556

62828

23018

150

268

1957

837

798

575

64653

23711

139

286

1958

1028

1235

65994

26600

256

357

1959

1114

1681

509

67207

26173

338

444

1960

1079

1870

66207

25880

380

506

1961

757

1156

434

65859

25590

138

271

1962

677

964

67295

25110

66

230

1963

779

1046

514

69172

26640

85

266

1964

943

1250

584

70499

27736

129

323

1965

1152

1581

632

72538

28670

175

393

1966

1322

1911

687

74542

29805

212

466

1967

1249

1647

697

76368

30814

156

352

1968

1187

1565

680

78534

31915

127

303

1969

1372

2101

688

80671

33225

207

447

1970

1638

2747

767

82992

34432

312

564

1971

1780

3156

790

85229

35620

355

638

1972

1833

3365

789

87177

35854

354

658

1973

1978

3684

855

89211

36652

374

691

1974

1993

3696

891

90859

37369

655

1975

2121

4254

932

92421

38168

462

692

1976

2052

4309

955

93717

38834

443

657

1977

2189

4925

971

94974

39377

454

723

2475

5590

1058

96259

39856

550

922

1979

2702

6065

1150

97542

40581

890

1980

2791

6592

1194

98705

41896

568

826

1981

2927

6862

1273

100072

73280

496

810

附录二:

X1-X6的估计值

Coefficients

Lower95%

Upper95%

下限95.0%

302.6861

392.4813

0.771211

0.449173

-513.5234027

1118.896

-513.523

0.475539

0.305308

1.557573

0.134278

-0.159383137

1.110462

-0.15938

0.081137

0.054185

1.4974

0.14917

-0.031547293

0.193821

-0.03155

-0.80035

0.428155

-1.86929

0.075593

-1.690742276

0.090051

-1.69074

0.006045

0.015019

0.402499

0.691385

-0.025188425

0.037279

-0.02519

-0.01685

0.027661

-0.60899

0.549064

-0.07437046

0.04068

-0.07437

-0.35707

0.427922

-0.83442

0.413436

-1.246977958

0.532845

-1.24698

1、涉及到字母,数字都要用公式编辑器来打

2、文字表述要得体,不能空洞

3、本篇的模型检验不过关

4、公式要居中,表头要顶格

5、公式后要有编号

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 纺织轻工业

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1