投资组合优化模型资料Word下载.docx

上传人:b****4 文档编号:17857758 上传时间:2022-12-11 格式:DOCX 页数:20 大小:527.99KB
下载 相关 举报
投资组合优化模型资料Word下载.docx_第1页
第1页 / 共20页
投资组合优化模型资料Word下载.docx_第2页
第2页 / 共20页
投资组合优化模型资料Word下载.docx_第3页
第3页 / 共20页
投资组合优化模型资料Word下载.docx_第4页
第4页 / 共20页
投资组合优化模型资料Word下载.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

投资组合优化模型资料Word下载.docx

《投资组合优化模型资料Word下载.docx》由会员分享,可在线阅读,更多相关《投资组合优化模型资料Word下载.docx(20页珍藏版)》请在冰豆网上搜索。

投资组合优化模型资料Word下载.docx

14.4

40

28

14.1

47

32

17.6

100

46

18

120

16.6

125

19.4

240

50

19.3

18.7

80

250

19.6

130

150

21

170

260

22

236

270

请解决以下问题:

(1)确定U与x,y的关系;

(2)若A的价格是每份120元,B的价格是每份80元,现有资金960万元,选定有效的投资方案以使收益最大。

二、问题分析

对于问题一,根据实际中投资学的相关原理和有关常识,我们知道在同等无风险的条件下,购买A类资产和购买B资产各自都会带来收益,因此,一般先确定U与x、y之间的关系,有利于我们在决定投资时,如何分配对A,B两类资产的投入资金的比重,这也是我们建立模型首先要解决的难点。

观察所给数据之间的大致关系来看,我们首先考虑建立回归模型,在进行数据分析时,不可能通过几个简单的假设就监理处了一个完美的数学模型,这就需要对现有的数据进行较为有效的筛选,在此次建模过程中我们一次进行了进行显著性分析,进行逐个剔除,消除误差项之间的自相关性,进一步优化后,得到最好的模型,再对结果分别进行预测和分析。

对于问题二,这是一个如何配置资源的问题,在已知目标函数的前提下,用有限的资金来得到最大的利益。

可以运用线性规划的相关知识来解决,列出所有已知条件,即约束条件,并利用MATlAB软件来进行求解,得到最优解,最后进行检验。

三、模型假设

1.投资者总是追求较高的收益,即投资者都是符合经济学中的“理性人”的假设。

2.在短时期内所给出的平均收益率不变,即保证所得数据在一定时期内的有效性。

3.假设题设中给的参数是准确值没有偏差。

4.存在无风险资产,即本文对A、B两类资产的投资都为无风险投资。

5.每种投资是否收益是相互独立的。

6.对收益率和风险的预测值是可信的

四、符号说明

U——收益

x——,购买A类资产的份数

y——,购买B类资产的份数

β0、β1、β2——分别为回归模型的常数项,自变量x、y前面的系数

εi——第i个样本回归模型的随机误差项

Ut——第t个收益的回归估计

xt——第t个购买A类资产的样本份数

yt——第t个购买B类资产的样本份数

五、理论背景

1.多元线性回归

一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。

当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。

设y为因变量X1,X2…Xk为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:

Yi=β0+β1X1i+β2X2i+…+βkXki+μii=1,2,…,n

其中k为解释变量的数目,βj(j=1,2,…,k)称为回归系数(regressioncoefficient)。

上式也被称为总体回归函数的随机表达式。

它的非随机表达式为

E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki

βj也被称为偏回归系数(partialregressioncoefficient)

建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:

(1)自变量对因变量必须有显著的影响,并呈密切的线性相关;

(2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的;

(3)自变量之间应具有一定的互斥性,即自变量之间的相关程度不应高于自变量与因变量之因的相关程度;

(4)自变量应具有完整的统计数据,其预测值容易确定。

2、自相关的概念

如果模型的随机误差项违背了互相独立的基本假设的情况,称为自相关性。

对于模型

Yi=β0+β1X1i+β2X2i+……+βkXki+μii=1,2,……,n

随机误差项互不相关的基本假设表现为:

Cov(μi,μj)=0i≠j,i,j=1,2,……,n

如果对于不同的样本点,随机误差项之间不再是不相关的,而是存在某种相关性,则认为出现了自相关性。

在其他假设仍旧成立的条件下,序列相关即意味着

E(μi,μj)!

=0

3、自相关性的后果

(1)参数估计量非有效

(2)变量的显著性检验失去意义

(3)模型的预测失效

4、自相关性的检验

杜宾-瓦森(Durbin-Watson)检验法

该方法的假定条件是:

(1)解释变量X非随机;

(2)随机误差项i为一阶自回归形式:

i=i-1+i

(3)回归模型中不应含有滞后应变量作为解释变量,即不应出现下列形式:

Yi=0+1X1i+kXki+Yi-1+i

(4)回归含有截距项;

(5)没有缺失数据。

D.W.统计量

5、具有自相关性模型的估计

(1)广义最小二乘法

(2)一阶差分法

(3)广义差分法

(4)随机误差项相关系数的估计

科克伦-奥科特迭代法

首先,采用OLS法估计原模型

Yi=0+1Xi+i

得到的随机误差项的“近似估计值”,并以之作为观测值采用OLS法估计下式

i=1i-1+2i-2+Li-L+i

得到1,2,,k,作为随机误差项的相关系数1,2,,k的第一次估计值。

其次,将上述1,2,,k,带入以差分模型

Yi-ρ1Yi-1-……-ρiYi-1=β0(1-ρ1-……-ρi)+βi(Xi-ρ1Xi-1-……-ρiXi-1)+εii=1,2,……,n

在此,将β0,β1代回原模型,计算出原模型随机误差项的新的“近似估计值”,并以之作为模型

Μi=ρ1μi-1+ρ2μi-2+……+ρkμi-k+ε

的样本观测值,采用OLS法估计该方程,得到1,2,,k作为相关系数1,2,,k的第二次估计值。

关于迭代的次数,可根据具体的问题来定。

一般是事先给出一个精度,当相邻两次1,2,,k的估计值之小于这一精度时,迭代终止。

杜宾(Durbin)两步法

该方法仍是先估计1,2,,k,再对差分模型进行估计。

第一步,变换差分模型为下列形式:

Yi=ρ1Yi-1+……+ρlYi-l+β0(1-ρ1-……-ρk)+β1(Xi-ρ1Xi-1-……-ρkXi-k)+εii=1,2,……,n

采用OLS法估计该方程,得到各Yj(j=i-1,i-2,……,i-k)前的系数1,2,,k的估计值ρ1,ρ2,……,ρk。

第二步,将估计的1,2,,k,代入差分模型

采用OLS法估计,得β0(1-ρ1-……-ρk),β1的估计量,记为*β0,*β1。

六、模型建立

问题一:

假定收益U与x、y之间存在线性关系,则可建立二元线性回归模型

U=β0+β1*x+β2*y+ε

式中,U表示总的收益;

x表示购买A类资产的份数;

y表示购买B类资产的份数;

β0、β1、β2分别表示回归方程的常数项、x和y前面的系数;

ε表示随机误差项。

问题二:

由上一问得到的模型U=9.042+0.047x+0.19y后,求目标函数的最大值

建立约束条件:

        120x+80y≤9600000

            X≥0

          Y≥0

式中,x、y表示的是整数。

七、模型求解及优化

1.问题一

(1)根据数据资料定义变量U(收益)、x(A类资产的份数)、y(B类资产的份数),再将全部数据输入spss界面,建立数据文件。

(2)选择U为因变量,以x、y为自变量,进行逐步回归;

在Statistics对话框中选择Estimate、Modelfit、Discriptives、Durbin-Watson;

选择Plots对话框的残差直方图、残差正态概率图。

并输出以ZRESID为X轴,以DPENDNT为Y轴的散点图;

在Save对话框里选择保存未标准预测值、未标准预测值残差、标准预测值、标准预测值残差;

Options对话框选项选择默认选项,各选项确认以后,交系统运行。

(3)结果及分析

描述统计表如下:

DescriptiveStatistics

Mean

Std.Deviation

N

14.231579

5.6033772

19

x

77.368421

77.1479175

y

81.368421

97.2106593

表中显示各个变量的全部观测量的Mean(均值)、Std.Deviation(标准差)和观测量总数N。

U 的均值和标准差分别为14.231579、5.6033772,x的均值和标准差分别为77.368421、77.1479175,y的均值和标准差分别为81.368421、97.2106593。

(4)相关系数矩阵如下:

Correlations

PearsonCorrelation

1.000

.852

.725

.614

Sig.(1-tailed)

.

.000

.003

表中显示了三个自变量两两间的Pearson相关系数,以及关于相关系数关系等于零的假设的单尾显著性检验概率。

从表中看到因变量U(收益)与自变量x(A类资产的份数)、y(B类资产的份数)之间相关系数一次为0.852、0.725,反应它们之间有显著的相关关系,而可以看出在同等条件下,购买A类资产相比购买B类资产的收益更大。

(5)回归系数表如下:

Coefficients(a)

     

Model

UnstandardizedCoefficients

StandardizedCoefficients

t

Sig.

Std.Error

Beta

1

(Constant)

9.445

.995

9.492

.062

.009

6.704

9.042

.912

9.911

.047

.011

.653

4.511

.019

.008

.325

2.244

.039

aDependentVariable:

U

据表中数据费标准化系数B的数值可以知道,逐步回归过程中先后建立的两个回归模型分别是:

模型1:

U=9.445+0.062*x

模型2:

U=9.042+0.047*x+0.019*y

即β0=9.042,β1=0.047,β2=0.019

Std.Error(标准误)列显示的是各系数的估计标准误差。

从模型中可以看到,购买A类资产和购买B类资产对收益都起到正影响,因为两个自变量前面的系数都为正数,这与假设分析一致,此投资为无风险投资。

(6)回归模型概述表如下:

ModelSummary(c)

Model

R

RSquare

AdjustedRSquare

Std.ErroroftheEstimate

Durbin-Watson

.852(a)

.726

.709

3.0207048

.890(b)

.791

.765

2.7154146

.395

aPredictors:

(Constant),x

bPredictors:

(Constant),x,y

cDependentVariable:

回归模型概述表中给出了第一个模型中因变量U与自变量x之间的相关系数R=0.852,说明变量U与x之间具有显著的线性关系。

第二个模型中因变量U与x、之间的复相关系数R=0.890,反映了变量U与x、y之间具有高度线性关系。

对于第二个模型给出了杜宾-瓦特森检验DW=0.395,此时的dl=1.08,du=1.53,因为0<

DW<

dl,所以误差项ε1、ε2……εn间存在正自相关。

由于回归模型存在序列自相关性,在此,我们用迭代法来处理。

Ut=k0+k1xt+k2yt

et=ρ*et-1+ut

U’t=Ut-ρ*Ut-1

x’t=xt-ρ*xt-1

y’t=yt-ρ*yt-1

其中,上式中的自相关系数p是未知的,可以由DW值做出估计p=1-1/2*DW,计算后得出p的估计值为0.8025。

于是原式变为

U’t=β0+β’1*xt+β’2*yt+ut

(7)上式模型有独立随机误差项,它满足线性回归模型的基本假设,用Excel做出有变换后的数据,并录入spss界面进行检验

由变换后的数据得出的回归模型概述表如下:

.635(a)

.403

.366

1.0569473

.772(b)

.596

.542

 .8975783

2.572

(Constant),xt

(Constant),xt,yt

Ut

概述表中给出了第二个模型给出了杜宾-瓦特森检验DW=2.572,此时的dl=1.08,du=1.53,因为dl<

4-du,所以说明误差项ε1、ε2……εn间存在正自相关已经消除。

同时,我们可以观察到修改后的回归模型的残差值也基本在水平线y=0附近随机分布

在此时自相关回归中,回归预测值Ut不是用k0+k1*xt+k2*yt计算,而是用

Ut=k’0+ρ*Ut-1+k’1(xt-ρ*xt-1)+k’2*(yt-ρ*yt-1)

在上式为我们最终建立的模型,式中我们取收益表中的最后一组数据作为xt-1和yt-1,即

=9.042+0.8025*22+0.047*(xt-0.8025*236)+0.019*(yt-0.8025*270)

=13.678845+0.047*xt+0.019*yt

t统计量值和t分布的双侧显著性概率Sig.皆远小于0.05,可以认为回归系数是显著的。

2.问题二:

根据问题一得到的模型和给出的已知条件,可以得到

目标函数:

maxU=13.678845+0.047*x+0.019*y

约束条件:

120x+80y<

=960

x>

y>

用MATLAB软件来求解线性规划的命令如下:

c=[-0.047-0.019];

A=[12080];

b=[9600000];

Aeq=[];

beq=[];

lb=[0;

0];

vb=[];

[x,fval]=linprog(c,A,b,Aeq,beq,lb,vb)

结果:

x=

1.0e+04*

8.0000

0.0000

fval=

-3.7600e+03

并运用MATLAB还可以求出该模型的图像

symsxyU

x=0:

2:

300;

y=0:

U=13.678845+0.047*x+0.019*y;

[x,y]=meshgrid(x,y);

surf(x,y,U)

可得在A的价格是每份120元,B的价格是每份80元,资金960万元的条件下,使收益最大时,应该将所有的资金960万元都用来买A类资产80000份,这是预计的最大收益是3773.679。

八、模型检验

模型检验主要是针对问题一所提出的模型进行检验。

对回归系数的显著性检验,我们用的是t检验。

t检验:

在多元线性回归中,回归方程显著并不意味着美国自变量对U的影响显著,所以需要对每个变量进行显著性检验。

如果某个自变量xj对作用不显著,那么在回归模型中,它的系数βj就取值为零。

因此,检验变量是否显著,等价于检验假设

H0j:

βj=0,j=1,2,……,p

据此可以构造t统计量

tj=β/√cjjσ

其中σ是回归标准差。

当∥tj∥≥tα/2时,拒绝元假设H0j:

βj=0,认为βj显著不为零,自变量xj对因变量y的线性效果显著;

当∥tj∥<tα/2时,接受原假设H0j:

βj=0,认为βj为零,自变量xj对因变量y的线性效果不显著。

下图是回归系数表

图中的Sig即显著性P值,由x的P≈0.000,由此可知此自变量x显著,y的P≈0.039,自变量y也显著。

由spss软件做出的残差统计表如下:

ResidualsStatistics(a)

Minimum

Maximum

PredictedValue

2.940604

6.030249

3.742167

1.0247230

Std.PredictedValue

-.782

2.233

StandardErrorofPredictedValue

.227

.761

.335

.153

AdjustedPredictedValue

1.334061

6.122075

3.665045

1.2092543

Residual

-1.4082221

1.8736107

.0000000

.8431280

Std.Residual

-1.569

2.087

.939

Stud.Residual

-1.621

2.185

.028

1.032

DeletedResidual

-1.5040683

2.3974390

.0771220

1.0913442

Stud.DeletedResidual

-1.725

2.556

.053

1.096

Mahal.Distance

.139

11.280

1.889

2.977

Cook'

sDistance

1.710

.132

.396

CenteredLeverageValue

.664

.111

.175

本表显示预测值(PredictedValue)、残差(Std.PredictedValue)、标准化预测值(StandardErrorofPredictedValue)、标准化残差的最小值(Minimum)、最大值(Maximum)、均值(Mean)、标准差(Std.Deviation)以及样本容量(N)。

根据概率的3-σ原则,上图中标准化残差的绝对值的最大值为1.569<

3,说明样本数据中没有奇异数据,模型具有有效性。

残差分布直方图和观测量累计概率P-P图如下:

回归分析中,总是假设残差ε服从正态分布,残差分布直方图和观测量累计概率P-P图就是根据样本数据的计算结果显示残差分布的实际状况,然后对残差分布是否为正态的假设做出检验。

从回归残差的直方图与附在图上的正态分布曲线相比较,可以认为残差不是很明显的服从正态分布。

尽管这样,也不能盲目地否定残差服从正态分布的假设,因为我们用来进行的样本量太小,样本容量仅为19.

观测量累计概率图,也是用来比较残差分布于正态分布差异的图形。

基于以上认识,从上图的散点分布状况来看,19个点大致散布于斜线附近,因此可以认为此次分布基本上是正态的。

输出的图形中还有一个因变量的回归标准化残差图,如

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1