基于单片机的步进电机控制1Word文档格式.docx

上传人:b****3 文档编号:17846855 上传时间:2022-12-11 格式:DOCX 页数:27 大小:495.99KB
下载 相关 举报
基于单片机的步进电机控制1Word文档格式.docx_第1页
第1页 / 共27页
基于单片机的步进电机控制1Word文档格式.docx_第2页
第2页 / 共27页
基于单片机的步进电机控制1Word文档格式.docx_第3页
第3页 / 共27页
基于单片机的步进电机控制1Word文档格式.docx_第4页
第4页 / 共27页
基于单片机的步进电机控制1Word文档格式.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

基于单片机的步进电机控制1Word文档格式.docx

《基于单片机的步进电机控制1Word文档格式.docx》由会员分享,可在线阅读,更多相关《基于单片机的步进电机控制1Word文档格式.docx(27页珍藏版)》请在冰豆网上搜索。

基于单片机的步进电机控制1Word文档格式.docx

年月日

学院院长(签字):

 

年月日

摘要

步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。

控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。

为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。

人们用它来驱动时钟和其他采用指针的仪器,打印机、绘图仪,磁盘光盘驱动器、各种自动控制阀、各种工具,还有机器人等机械装置。

此外作为执行元件,步进电机是机电一体化的关键产品之一,被广泛应用在各种自动化控制系统中,随着微电子和计算机技术的发展,它的需要量与日俱增,在各个国民经济领域都有应用。

步进电机是机电数字控制系统中常用的执行元件,由于其精度高、体积小、控制方便灵活,因此在智能仪表和位置控制中得到了广泛的应用,大规模集成电路的发展以及单片机技术的迅速普及,为设计功能强,价格低的步进电机控制驱动器提供了先进的技术和充足的资源。

关键词:

AT89C52单片机步进电机ULN2003A驱动器

目录

第一章设计概述4

1.1步进电机原理及控制技术4

1.2总体设计方框图6

1.3设计原理分析6

1.3.1元器件介绍6

1.3.2方案论证8

第二章硬件描述9

2.1系统核心元器件单片机AT89C51芯片简介9

2.1.1MCS—51基本组成及其主要特点9

2.2显示部分——共阳极八段数码管简介10

2.3用Proteus仿真部分11

2.3.1Proteus软件介绍11

2.3.2控制电路12

2.3.3最小系统13

2.3.4驱动电路14

2.3.5显示电路14

2.3.6总体电路图15

第三章软件描述16

3.1主程序设计16

3.2定时中断设计17

3.3外部中断设计18

3.4汇编程序清单19

3.5C语言程序清单22

第四章设计总结25

课设体会25

参考文献26

第一章设计概述

1.1步进电机原理及控制技术

由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,它不能直接接到交直流电源上,而必须使用专业设备----步进电机控制驱动器,典型步进电机控制系统如图1所示:

控制器可以发出脉冲频率从几赫兹到几千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列,环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输入端,以驱动步进电机的转动,环形分配器主要有两大类:

一类是用计算机软件设计的方法实现环形分配器要求的功能,通常称软环形分配器。

另一类是用硬件构成的环形分配器,通常称硬环形分配器。

功率放大器主要对环形分配器的较小输出信号进行放大,以达到驱动步进电机的目的,步进电机的基本控制包括转向控制和速度控制两个方面。

从结构上看,步进电机分为三相单三拍、三相双三拍和三相六拍3种,其基本原理如下:

(1)换相顺序的控制

通电换相这一过程称为脉冲分配。

例如,三相步进电机在单三拍的工作方式下,其各相通电顺序为A→B→C→A,通电控制脉冲必须严格按照这一顺序分别控制A、B、C相的通断。

三相双三拍的通电顺序为AB→BC→CA→AB,三相六拍的通电顺序为A→AB→B→BC→C→CA→A。

(2)步进电机的换向控制

如果给定工作方式正序换相通电,步进电机正转。

若步进电机的励磁方式为三相六拍,即A→AB→B→BC→C→CA→A。

如果按反序通电换相,即A→AC→C→CB→B→BA→A,则电机就反转。

其他方式情况类似。

(3)步进电机的速度控制

如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。

两个脉冲的间隔越短,步进电机就转得越快。

调整送给步进电机的脉冲频率,就可以对步进电机进行调试。

(4)步进电机的起停控制

步进电机由于其电气特性,运转时会有步进感。

为了使电机转动平滑,减小振动,可在步进电机控制脉冲的上升沿和下降沿采用细分的梯形波,可以减小步进电机的步进角,跳过电机运行的平稳性。

在步进电机停转时,为了防止因惯性而使电机轴产生顺滑,则需采用合适的锁定波形,产生锁定磁力矩,锁定步进电机的转轴,使步进电机转轴不能自由转动。

(5)步进电机的加减速控制

在步进电机控制系统中,通过实验发现,如果信号变化太快,步进电机由于

惯性跟不上电信号的变化,这时就会产生堵转和失步现象。

所有步进电机在启动时,必须有加速过程,在停止时波形有减速过程。

理想的加速曲线一般为指数曲线,步进电机整个降速过程频率变化规律是整个加速过程频率变化规律的逆过程。

选定的曲线比较符合步进电机升降过程的运行规律,能充分利用步进电机的有效转矩,快速响应性好,缩短了升降速的时间,并可防止失步和过冲现象。

在一个实际的控制系统中,要根据负载的情况来选择步进电机。

步进电机能响应而不失步的最高步进频率称为“启动频率”,于此类似“停止频率”是指系统控制信号突然关断,步进电机不冲过目标位置的最高步进频率。

电机的启动频率、停止频率和输出转矩都要和负载的转动惯量相适应,有了这些数据,才能有效地对电机进行加减速控制。

加速过程有突然施加的脉冲启动频率f0。

步进电机的最高启动频率(突跳频率)一般为0.1KHz到3~4KHz,而最高运行频率则可以达到N*102KHz,以超过最高启动频率的频率直接启动,会产生堵转和失步的现象。

在一般的应用中,经过大量实践和反复验证,频率如按直线上升或下降,控制效果就可以满足常规的应用要求。

用PLC实现步进电机的加P减速控制,实践上就是控制发脉冲的频率。

加速时,使脉冲频率增高,减速则相反。

如果使用定时器来控制电机的速度,加减速控制就是不断改变定时中断的设定值。

速度从v1~v2变化,如果是线性增加,则按给定的斜率加P减速;

如果是突变,则按阶梯加速处理。

在此过程中要处理好两个问题:

①速度转换时间应尽量短。

为了缩短速度转换的时间,可以采用建立数据表的方法。

结合各曲线段的频率和各段间的阶梯频率,就可以建立一个连续的数据表,并通过转换程序将其转换为定时初始表。

通过在不同的阶段调用相应的定时初值,就可控制电机的运行。

定时初值的计算是在定时中断外实现的,并不占用中断时间,保证电机的高速运行。

②保证控制速度的精确性。

要从一个速度准确达到另一个速度,就要建立一个校验机制,以防超过或未达到所需速度。

(6)步进电机的换向控制

步进电机换向时,一定要在电机降速停止或降到突跳频率范围之内在换向,以免产生较大的冲击而损坏电机。

换向信号一定要在前一个方向的最后一个脉冲结束后以及下一个方向的第一个脉冲前发出。

对于脉冲的设计主要要求其有一定的脉冲宽度、脉冲序列的均匀度及高低电平方式。

在某一高速下的正、反向切换实质包含了降速→换向→加速3个过程。

步进电机有如下特点:

①步进电机的角位移与输入脉冲数严格成正比,因此当它转一转后,没有累计误差,具有良好的跟随性。

②由步进电机与驱动电路组成的开环数控系统,既非常方便、廉价,也非常可靠。

同时,它也可以有角度反馈环节组成高性能的闭环数控系统。

③步进电机的动态响应快,易于启停、正反转及变速。

④速度可在相当宽的范围内平滑调节,低速下仍能保证获得很大的转矩,因此一般可以不用减速器而直接驱动负载。

⑤步进电机只能通过脉冲电源供电才能运行,它不能直接用交流电源或直流电源。

⑥步进电机自身的噪声和振动比较大,带惯性负载的能力强。

1.2总体设计方框图

总体设计方框图如图2所示

1.3设计原理分析

1.3.1元器件介绍

(1)步进电机

步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。

步进电机区别于其他控制电机的最大特点是:

它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。

步进电机分三种:

永磁式(PM),反应式(VR)和混合式(HB),步进电机又称为脉冲电机,是工业过程控制和仪表中一种能够快速启动,反转和制动的执行

元件,其功用是将电脉冲转换为相应的角位移或直线位移,由于开环下就能实现精确定位的特点,使其在工业控制领域获得了广泛应用。

步进电机的运转是由电脉冲信号控制的,其角位移量或线位移量与脉冲数成正比,每个一个脉冲,步进电机就转动一个角度(不距角)或前进、倒退一步。

步进电机旋转的角度由输入的电脉冲数确定,所以,也有人称步进电机为数字/角度转换器。

1四相步进电机的工作原理

该设计采用了20BY-0型步进电机,该电机为四相步进电机,采用单极性直流电源供电。

只要对步进电机的各相绕组按合适的时序通电,就能使步进电机转动。

当某一相绕组通电时,对应的磁极产生磁场,并与转子形成磁路,这时,如果定子和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻最小路径的特点,则转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促使电机旋转的原因。

②步进电机的静态指标及术语

相数:

产生不同队N、S磁场的激磁线圈对数,常用m表示。

拍数:

完成一个磁场周期性变化所需脉冲用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB→BC→CD→DA→AB,四相八拍运行方式即A→AB→B→BC→C→CD→D→DA→A。

步距角:

对应一个脉冲信号,电机转子转过的角位移用θ表示。

Θ=360度(转子齿角运行拍数),以常规二、四相,转子齿角为50齿角电机为例。

四相运行时步距角为θ=360度/(50*4)=1.8度,八拍运行时步距角为θ=360度/(50*8)=0.9度。

定位转矩:

电机在不通电的状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)。

静转矩:

电机在额定静态作业下,电机不做旋转运动时,电机转轴的锁定力矩。

此力矩是衡量电机体积的标准,与驱动电压及驱动电源等无关。

虽然静态转矩与电磁激磁匝数成正比,与定子和转子间的气隙有关。

但过分采用减小气隙,增加励磁匝数来提高静转矩是不可取的,这样会造成电机的发热及机械噪音。

③四相步进电机的脉冲分配规律

目前,对步进电机的控制主要有分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。

本设计利用单片机进行控制,主要是利用软件进行环形脉冲分配。

四相步进电机的工作方式为四相单四拍,双四拍和四相八拍工作的方式。

各种工作方式在电源通电时的时序与波形分别如图1a、b、c所示。

本设计的电机工作方式为四相单四拍,根据步进电机的工作的时序和波形图,总结出其工作方式为四相单四拍时的脉冲分配规律,四相双四拍的脉冲分配规律,在每一种工作方式中,脉冲的频率越高,其转速就越快,但脉冲频率高到一定程度,步进电机跟不上频率的变化后电机会出现失步现象,所以脉冲频率一定要控制在步进电机允许的范围内。

1.3.2方案论证

从该系统的设计要求可知,该系统的输入量为速度和方向,速度应该有增减变化,通常用加减按钮控制速度,这样只要2根口线,再加上一根方向线盒一根启动信号线共需要4根输入线。

系统的输出线与步进电机的绕组数有关。

这里选

进电机,该电机共有四相绕组,工作电压为+5V,可以个单片机共用一个电源。

步进电机的四相绕组用P1口的P1.0~P1.3控制,由于P1口驱动能力不够,因而用一片2803增加驱动能力。

用P0口控制第一数码管用于显示正反转,用P2口控制第二个数码管用于显示转速等级。

数码管采用共阳的。

第二章硬件描述

本设计的硬件电路只要包括控制电路、最小系统、驱动电路、显示电路四大部分。

最小系统只要是为了使单片机正常工作。

控制电路只要由开关和按键组成,由操作者根据相应的工作需要进行操作。

显示电路主要是为了显示电机的工作状态和转速。

驱动电路主要是对单片机输出的脉冲进行功率放大,从而驱动电机转动。

2.1系统核心元器件单片机AT89C51芯片简介

Atmel公司生产的89C51单片机是一种低功耗/低电压‘高性能的8位单片机,它采用CMOS和高密度非易失性存储技术,而且其输出引脚和指令系统都与MCS-51兼容;

片内的FlashROM允许在系统内改编程序或用常规的非易失性编程器来编程,内部除CPU外,还包括256字节RAM,4个8位并行I/O口,5个中断源,2个中断优先级,2个16位可编程定时计数器,89C51单片机是一种功能强、灵活性高且价格合理的单片机,完全满足本系统设计需要。

2.1.1MCS—51基本组成及其主要特点

MCS—51系列单片机基本结构如图4所示。

每一片单片机包括:

(1)中央处理单器CPU;

(2)256B内部数据存储器RAM,用以存放可以读,写得数据,如运算中间结果和最终结果等;

(3)4KB内部指令存储器ROM,用以存放程序,亦可存放一些原始数据和表格;

(4)4个8位输入/输出接口P0,P1,P2,P3。

每个口既可以用作输入,也可用作输出。

(5)2个定时/计数器。

可以用来对外部事件进行计数,也可以设置成定时器,并根据计数或定时的结果对计算机进行控制:

图4MCS-51单片机的基本组成

(6)内部中断控制系统;

(7)1个全双工UART(通用异步接受发送器)串行I/O接口,使得数据可以一位一位在计算机与外设之间传送,可以用于单片机或单片机与微机之间的串行通信;

(8)内部时钟产生电路,但晶振和微调电容需要外接。

振荡频率范围为1.2到12MHZ。

以上各部分通过内部总线连接。

2.2显示部分——共阳极八段数码管简介

在单片机应用系统中常用的显示器主要有发光二级管显示器,简称LED和液晶显示器,简称LED。

这两种显示器具有耗电省,价格低配置灵活,线路简单,安装方便,耐振动,寿命长等优点,但因其显示内容有限,且不能显示图形,因而其应用具有局限性。

近年来对某些要求较高的单片机应用系统开始配置简易形式的显示器(CRT)接口,虽然可以进行图形显示,但接口比较复杂,成本也较高。

LED显示器是有发光二级管显示字段的显示器件,也可称为数码管。

其外形结构如图5(a)所示,由图可见,它由8个发光二级管(以下简称字段)构成,通过不同的组合可以用来显示。

0~9,A~F及小数点“.”等字符。

数码管有共阴极和共阳极两种结构,见图5(c)和图5(b).图中电阻为外接。

共阴极数码管的发光二极管阴极接地,当发光二极管的阳极为高电平(一般为+5V)时,此二极管亮;

共阳极数码管的发光二极管是阳极并接到高电平,对于需点亮的发光二极管使其阴极接低电平(一般为地)即可。

显然,要显示某字形就应是此段字形的相应字段点亮,实际就是将一个用不同电平组合代表的数据送数码管。

这种装入数码管中显示字形的数据称字形符。

本课设用共阳极数码管。

图5“8”字形数码管

2.3用Proteus仿真部分

2.3.1Proteus软件介绍

本软件是英国Labcenterelectronics公司出版的EDA工具软件(该软件中国总代理为广州风标电子技术有限公司)。

它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。

它是目前最好的仿真单片机及外围器件的工具。

虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。

Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。

是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年即将增加Cortex和DSP系列处理器,并持续增加其他系列处理器模型。

在编译方面,它也支持IAR、Keil和MPLAB等多种编译器。

在PROTEUS绘制好原理图后,调入已编译好的目标代码文件:

*.HEX,可以在PROTEUS的原理图中看到模拟的实物运行状态和过程。

PROTEUS是单片机课堂教学的先进助手。

PROTEUS不仅可将许多单片机实例功能形象化,也可将许多单片机实例运行过程形象化。

前者可在相当程度上得到实物演示实验的效果,后者则是实物演示实验难以达到的效果。

它的元器件、连接线路等却和传统的单片机实验硬件高度对应。

这在相当程度上替代了传统的单片机实验教学的功能,例:

元器件选择、电路连接、电路检测、电路修改、软件调试、运行结果等。

  

课程设计、毕业设计是学生走向就业的重要实践环节。

由于PROTEUS提供了实验室无法相比的大量的元器件库,提供了修改电路设计的灵活性、提供了实验室在数量、质量上难以相比的虚拟仪器、仪表,因而也提供了培养学生实践精神、创造精神的平台  随着科技的发展,“计算机仿真技术”已成为许多设计部门重要的前期设计手段。

它具有设计灵活,结果、过程的统一的特点。

可使设计时间大为缩短、耗资大为减少,也可降低工程制造的风险。

相信在单片机开发应用中PROTEUS也能茯得愈来愈广泛的应用。

2.3.2控制电路

根据系统的控制要求,控制输入部分设置了启动控制,换向控制,加速控制和减速控制按钮,分别是K1、K2、S2、S3,控制电路如图6所示。

通过K1、K2状态变化来实现电机的启动和换向功能。

当K1、K2的状态变化时,内部程序检测P1.0和P1.1的状态来调用相应的启动和换向程序,发现系统的电机的启动和正反转控制。

根据步进电机的工作原理可以知道,步进电机转速的控制主要是通过控制通入电机的脉冲频率,从而控制电机的转速。

对于单片机而言,主要的方法有:

软件延时和定时中断在此电路中电机的转速控制主要是通过定时器的中断来实现的,该电路控制电机加速度主要是通过S2、S3的断开和闭合,从而控制外部中断根据按键次数,改变速度值存储区中的数据(该数据为定时器的中断次数),这样就改变了步进电机的输出脉冲频率,从而改变了电机的转速。

图6控制电路原理图

2.3.3最小系统

单片机最小系统或者称为最小应用系统,素质用最少的元件组成的单片机可以工作的系统,对51系列单片机来说,最小系统一般应该包括:

单片机、复位电路、晶振电路。

复位电路:

使用了独立式键盘,单片机的P1口键盘的接口。

该设计要求只需4个键对步进电机的状态进行控制,但考虑到对控制功能的扩展,使用了6路独立式键盘。

复位电路采用手动复位,所谓手动复位,是指通过接通一按钮开关,使单片机进入复位状态,晶振电路用30PF的电容和一12M晶体振荡器组成为整个电路提供时钟频率。

如图7示。

晶振电路:

8051单片机的时钟信号通常用两种电路形式电路得到:

内部震荡方式和外部中断方式。

在引脚XTAL1和XTAL2外部接晶振电路器(简称晶振)或陶瓷晶振器,就构成了内部晶振方式。

由于单片机内部有一个高增益反相放大器,当外接晶振后,就构成了自激振荡器并产生振荡时钟脉冲。

内部振荡方式的外部电路如图5示。

其电容值一般在5~30pf,晶振频率的典型值为12MHz,采用6MHz的情况也比较多。

内部振荡方式所得的时钟信号比较稳定,实用电路实用较多。

图7复位及时钟振荡电路

2.3.4驱动电路

通过ULN2803构成比较多的驱动电路,电路图如图6所示。

通过单片机的P1.0~P1.3输出脉冲到ULN2803的1B~4B口,经信号放大后从1C~4C口分别输出到电机的A、B、C、D相。

图8步进电机驱动电路

2.3.5显示电路

在该步进电机的控制器中,电机可以正反转,可以加速、减速,其中电机转速的等级分为七级,为了方便知道电机的运行状态和电机的转速的等级,这里设计了电机转速和电机的工作状态的显示电路。

在显示电路中,主要是利用了单片机的P0口和P2口。

采用两个共阳数码管作显示。

第一个数码管接的a、b、c、d、e、f、g、h分别接P0.0~P0.7口,用于显示电机正反转状态,正转时显示“1”,反转时显示“一”,不转时显示“0”。

第二个数码管的a、b、c、d、e、f、g、h分别接P2.0~P2.7口,用于显示电机的转速级别,共七级,即从1~7转速依次递增,“0”表示转速为零。

电路如图9所示。

图9显示电路

2.3.6总体电路图

把各个部分的电路图组合成总电路图,如图10所示。

图8总体电路图

第三章软件描述

通过分析可以看出,实现系统功能可以采用多种方法,由于随时有可能输入加速、加速信号和方向信号,因而采用中断方式效率最高,这样总共要完成4个部分的工作才能满足课题要求,即主程序部分、定时器中断部分、外部中断0和外部中断1部分,其中主程序的主要功能是系统初始参数的设置及启动开关的检测,若启动开关合上则系统开始工作,反之系统停止工作;

定时器部分控制脉冲频率,它决定了步进电机转速的快慢;

两个外部中断程序要做的工作都是为了完成改变速度这一功能。

下面分析主程序与定时器中断程序及外部中断程序。

3.1主程序设计

主程序中要完成的工作主要有系统初始值的设置、系统状态的显示以及各种开关状态的检测判断等。

其中系统初始状态的设置内容较多,该系统中,需要初始化定时器、外部中断;

对P1口送初值以决定脉冲分配方式,速度值存储区送初值决定步进电机的启动速度,对方向值存储区送初值决定步进电机旋转方向等内容。

若初始化P1=11H、速度和方向初始值均设为0,就意味着步进电机按四相单四拍运行,系统上电后在没有操作的情况下,步进电机不旋转,方向值显示“0”,速度值显示“0”,主程序流程图如图11所示。

图11主程序流程图

3.2定时中断设计

步进电机的转动主要是给电机各绕组按一定的时间间隔连续不断地按规律通入电流,步进电机才会旋转,时间间隔越短,速度就越快。

在这个系统中,这个时间间隔是用定时器重复中断一定次数产生的,即调节时间间隔就是调节定时器的中断次数,因而在定时器中断程序中,要做的工作主要是判断电机的运行方向、发下一个脉冲,以及保存当前的各种状态。

程序流程图如图12所示。

图12

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1