multiple organ retrieval and exchange MORE in Canada文档格式.docx

上传人:b****3 文档编号:17823734 上传时间:2022-12-11 格式:DOCX 页数:29 大小:30.07KB
下载 相关 举报
multiple organ retrieval and exchange MORE in Canada文档格式.docx_第1页
第1页 / 共29页
multiple organ retrieval and exchange MORE in Canada文档格式.docx_第2页
第2页 / 共29页
multiple organ retrieval and exchange MORE in Canada文档格式.docx_第3页
第3页 / 共29页
multiple organ retrieval and exchange MORE in Canada文档格式.docx_第4页
第4页 / 共29页
multiple organ retrieval and exchange MORE in Canada文档格式.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

multiple organ retrieval and exchange MORE in Canada文档格式.docx

《multiple organ retrieval and exchange MORE in Canada文档格式.docx》由会员分享,可在线阅读,更多相关《multiple organ retrieval and exchange MORE in Canada文档格式.docx(29页珍藏版)》请在冰豆网上搜索。

multiple organ retrieval and exchange MORE in Canada文档格式.docx

Abstract

Proteomicsaimsatdeterminingthestructure,functionandexpressionofproteins.High-throughputmassspectrometry(MS)isemergingasaleadingtechniqueintheproteomicsrevolution.Thoughitcanbeusedtofinddisease-relatedproteinpatternsinmixturesofproteinsderivedfromeasilyobtainedsamples,keychallengesremainintheprocessingofproteomicMSdata.Multiscalemathematicaltoolssuchaswaveletsplayanimportantroleinsignalprocessingandstatisticaldataanalysis.Awavelet-basedalgorithmforproteomicdataprocessingisdeveloped.AMATLABimplementationofthesoftwarepackage,calledWaveSpect0,ispresentedincludingprocessingproceduresofstep-intervalunification,adaptivestationarydiscretewaveletdenoising,baselinecorrectionusingsplines,normalization,peakdetection,andanewlydesignedpeakalignmentmethodusingclusteringtechniques.ApplicationstorealMSdatasetsfordifferentcancerresearchprojectsinVanderbiltIngramCancerCentershowthatthealgorithmisefficientandsatisfactoryinMSdatamining.

ArticleOutline

1.Introduction

2.WaveletsandapplicationsinproteomicMSdataanalysis

2.1.WaveletsforMALDI-TOFMSData

2.2.Waveletdenoisingstrategy

2.3.Analysisonwaveletdomain

3.Method:

processingprocedures

3.1.Step-intervalunificationanddenoising

3.2.Baselinecorrectionandnormalization

3.3.Peakdetectionandalignment

4.Results

4.1.Peakselectionbasedmethodresults

4.2.Waveletcoefficientsanalysisresults

Acknowledgements

References

Purchase

$31.50

237

Networkdesigntechniquesusingadaptedgeneticalgorithms 

AdvancesinEngineeringSoftware,Volume32,Issue9,September2001,Pages731-744

MitsuoGen,RunweiCheng,ShumuelS.Oren

Inrecentyearswehaveevidencedanextensiveeffortinthedevelopmentofcomputercommunicationnetworks,whichhavedeeplyintegratedinhumanbeing'

severydaylife.Oneofimportantaspectsofthenetworkdesignprocessisthetopologicaldesignprobleminvolvedinestablishingacommunicationnetwork.However,withtheincreaseoftheproblemscale,theconventionaltechniquesarefacingthechallengetoeffectivelyandefficientlysolvethosecomplicatednetworkdesignproblems.Inthisarticle,wesummarizedrecentresearchworksonnetworkdesignproblemsbyusinggeneticalgorithms(GAs),includingmultistageprocessplanning(MPP)problem,fixedchargetransportationproblem(fc-TP),minimumspanningtreeproblem,centralizednetworkdesign,localareanetwork(LAN)designandshortestpathproblem.Alltheseproblemsareillustratedfromthepointofgeneticrepresentationencodingskillandthegeneticoperatorswithhybridstrategies.LargequantitiesofnumericalexperimentsshowtheeffectivenessandefficiencyofsuchkindofGA-basedapproach.

2.AdaptationofGAs

3.Multistageprocessplanningproblems

3.1.Representation

3.2.Geneticoperators

3.3.Evaluation

3.4.Example

4.Fixedchargetransportationproblem

4.1.Representation

4.2.Geneticoperators

4.3.Evaluationandselection

4.4.Examples

5.Minimumspanningtreeproblem

5.1.Representation

5.2.Feasibilitycondition

5.3.Geneticoperators

6.Centralizednetworkdesignproblem

7.Localareanetworkdesignproblem

8.Shortestpathproblem

8.1.Representation

8.2.Pathgrowthprocedure

8.3.Geneticoperators

8.4.Compromiseapproach

8.5.Evaluationandselection

8.6.OverallprocedureofGA

8.7.Examples

9.Conclusions

238

Areconfigurablecomputingframeworkformulti-scalecellularimageprocessing 

MicroprocessorsandMicrosystems,Volume31,Issue8,3December2007,Pages546-563

ReidPorter,JanFrigo,AlConti,NealHarvey,GarrettKenyon,MayaGokhale

Cellularcomputingarchitecturesrepresentanimportantclassofcomputationthatarecharacterizedbysimpleprocessingelements,localinterconnectandmassiveparallelism.ThesearchitecturesareagoodmatchformanyimageandvideoprocessingapplicationsandcanbesubstantiallyacceleratedwithReconfigurableComputers.Wepresentaflexiblesoftware/hardwareframeworkfordesign,implementationandautomaticsynthesisofcellularimageprocessingalgorithms.Thesystemprovidesanextremelyflexiblesetofparallel,pipelinedandtime-multiplexedcomponentswhichcanbetailoredthroughreconfigurablehardwareforparticularapplications.Themostnovelaspectsofourframeworkincludeahighlypipelinedarchitectureformulti-scalecellularimageprocessingaswellassupportforseveraldifferentpatternrecognitionapplications.Inthispaper,wewilldescribethesystemindetailandpresentourperformanceassessments.Thesystemachievedspeed-upofatleast100×

forcomputationallyexpensivesub-problemsand10×

forend-to-endapplicationscomparedtosoftwareimplementations.

2.Background

2.1.Typicalneighborhoodfunctions

2.2.Implementingneighborhoodfunctions

2.2.1.Dataparallel

2.2.2.Instructionparallel

3.Systemoverview

3.1.Networkspecificationfile

3.2.Networkparameterfile

4.Hardwareoverview

4.1.HardwareAPI

4.2.SoftwareAPI

5.Hardwarecomponents

5.1.Neighborhoodmemoryaccess

5.2.Neighborhoodfunctions

5.2.1.Convolution

5.2.2.Morphology

5.2.3.Threshold

5.3.Datasequencing

5.3.1.Downsampling

5.3.2.Streamsplitting

5.3.3.Streammixing

5.3.4.Upsampling

5.4.Parametermodule

6.Applicationcasestudies

6.1.ApplicationI

6.2.ApplicationII

7.Conclusion

$35.95

239

APHID:

Anarchitectureforprivate,high-performanceintegrateddatamining 

FutureGenerationComputerSystems,Volume26,Issue7,July2010,Pages891-904

JimmySecretan,MichaelGeorgiopoulos,AnnaKoufakou,KelCardona

Whiletheemergingfieldofprivacypreservingdatamining(PPDM)willenablemanynewdataminingapplications,itsuffersfromseveralpracticaldifficulties.PPDMalgorithmsarechallengingtodevelopandcomputationallyintensivetoexecute.DevelopersneedconvenientabstractionstosimplifytheengineeringofPPDMapplications.Theindividualpartiesinvolvedinthedataminingprocessneedawaytobringhigh-performance,parallelcomputerstobearonthecomputationallyintensivepartsofthePPDMtasks.ThispaperdiscussesAPHID(ArchitectureforPrivateandHigh-performanceIntegratedDatamining),apracticalarchitectureandsoftwareframeworkfordevelopingandexecutinglargescalePPDMapplications.Atonetier,thesystemsupportssimplifieduseofclusterandgridresources,andatanothertier,thesystemabstractscommunicationforeasyPPDMalgorithmdevelopment.ThispaperoffersadetailedanalysisofthechallengesindevelopingPPDMalgorithmswithexistingframeworks,andmotivatesthedesignofanewinfrastructurebasedonthesechallenges.

2.Distributedandprivacypreservingdatamining

3.Background/relatedwork

3.1.Highperformanceparalleldataminingonclustersandgrids

3.2.Distributeddatamining

3.2.1.Agent-basedapproachesforDDM

3.3.DDMmiddleware

3.3.1.WebservicesforDDM

3.4.ArchitecturestosupportPPDM

4.PPDMpreliminaries

5.APHID

5.1.Developmentmodel

5.1.1.Programstructure

5.1.2.Sharedvariables

5.2.Mainexecutionlayer

5.3.High-performancecomputingservices

5.4.PPDMservices

5.5.Datamanagementbetweenlayersandparties

6.Examplealgorithmimplementation

6.1.Notation

6.2.Example:

privacypreservingNaï

veBayesclassifier

6.2.1.Securesum

6.2.2.Calculatingfrequencyofattributes

7.Performanceresults

8.Discussion

9.Conclusionsandfuturework

Vitae

$19.95

240

Perspectivesforprocesssystemsengineering—Personalviewsfromacademiaandindustry 

Computers&

ChemicalEngineering,Volume33,Issue3,20March2009,Pages536-550

Karsten-UlrichKlatt,WolfgangMarquardt

Processsystemsengineering(PSE)hasbeenanactiveresearchfieldforalmost50years.Itsmajorachievementsincludemethodologiesandtoolstosupportprocessmodeling,simulationandoptimization(MSO).Mature,commerciallyavailabletechnologieshavebeenpenetratingallfieldsofchemicalengineeringinacademiaaswellasinindustrialpractice.MSOtechnologieshavebecomeacommodity,theyarenotadistinguishingfeatureofthePSEfieldanymore.Consequently,PSEhastoreassessandtorepositionitsfutureresearchagenda.Emphasisshouldbep

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 计算机软件及应用

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1