multiple organ retrieval and exchange MORE in Canada文档格式.docx
《multiple organ retrieval and exchange MORE in Canada文档格式.docx》由会员分享,可在线阅读,更多相关《multiple organ retrieval and exchange MORE in Canada文档格式.docx(29页珍藏版)》请在冰豆网上搜索。
Abstract
Proteomicsaimsatdeterminingthestructure,functionandexpressionofproteins.High-throughputmassspectrometry(MS)isemergingasaleadingtechniqueintheproteomicsrevolution.Thoughitcanbeusedtofinddisease-relatedproteinpatternsinmixturesofproteinsderivedfromeasilyobtainedsamples,keychallengesremainintheprocessingofproteomicMSdata.Multiscalemathematicaltoolssuchaswaveletsplayanimportantroleinsignalprocessingandstatisticaldataanalysis.Awavelet-basedalgorithmforproteomicdataprocessingisdeveloped.AMATLABimplementationofthesoftwarepackage,calledWaveSpect0,ispresentedincludingprocessingproceduresofstep-intervalunification,adaptivestationarydiscretewaveletdenoising,baselinecorrectionusingsplines,normalization,peakdetection,andanewlydesignedpeakalignmentmethodusingclusteringtechniques.ApplicationstorealMSdatasetsfordifferentcancerresearchprojectsinVanderbiltIngramCancerCentershowthatthealgorithmisefficientandsatisfactoryinMSdatamining.
ArticleOutline
1.Introduction
2.WaveletsandapplicationsinproteomicMSdataanalysis
2.1.WaveletsforMALDI-TOFMSData
2.2.Waveletdenoisingstrategy
2.3.Analysisonwaveletdomain
3.Method:
processingprocedures
3.1.Step-intervalunificationanddenoising
3.2.Baselinecorrectionandnormalization
3.3.Peakdetectionandalignment
4.Results
4.1.Peakselectionbasedmethodresults
4.2.Waveletcoefficientsanalysisresults
Acknowledgements
References
Purchase
$31.50
237
Networkdesigntechniquesusingadaptedgeneticalgorithms
AdvancesinEngineeringSoftware,Volume32,Issue9,September2001,Pages731-744
MitsuoGen,RunweiCheng,ShumuelS.Oren
Inrecentyearswehaveevidencedanextensiveeffortinthedevelopmentofcomputercommunicationnetworks,whichhavedeeplyintegratedinhumanbeing'
severydaylife.Oneofimportantaspectsofthenetworkdesignprocessisthetopologicaldesignprobleminvolvedinestablishingacommunicationnetwork.However,withtheincreaseoftheproblemscale,theconventionaltechniquesarefacingthechallengetoeffectivelyandefficientlysolvethosecomplicatednetworkdesignproblems.Inthisarticle,wesummarizedrecentresearchworksonnetworkdesignproblemsbyusinggeneticalgorithms(GAs),includingmultistageprocessplanning(MPP)problem,fixedchargetransportationproblem(fc-TP),minimumspanningtreeproblem,centralizednetworkdesign,localareanetwork(LAN)designandshortestpathproblem.Alltheseproblemsareillustratedfromthepointofgeneticrepresentationencodingskillandthegeneticoperatorswithhybridstrategies.LargequantitiesofnumericalexperimentsshowtheeffectivenessandefficiencyofsuchkindofGA-basedapproach.
2.AdaptationofGAs
3.Multistageprocessplanningproblems
3.1.Representation
3.2.Geneticoperators
3.3.Evaluation
3.4.Example
4.Fixedchargetransportationproblem
4.1.Representation
4.2.Geneticoperators
4.3.Evaluationandselection
4.4.Examples
5.Minimumspanningtreeproblem
5.1.Representation
5.2.Feasibilitycondition
5.3.Geneticoperators
6.Centralizednetworkdesignproblem
7.Localareanetworkdesignproblem
8.Shortestpathproblem
8.1.Representation
8.2.Pathgrowthprocedure
8.3.Geneticoperators
8.4.Compromiseapproach
8.5.Evaluationandselection
8.6.OverallprocedureofGA
8.7.Examples
9.Conclusions
238
Areconfigurablecomputingframeworkformulti-scalecellularimageprocessing
MicroprocessorsandMicrosystems,Volume31,Issue8,3December2007,Pages546-563
ReidPorter,JanFrigo,AlConti,NealHarvey,GarrettKenyon,MayaGokhale
Cellularcomputingarchitecturesrepresentanimportantclassofcomputationthatarecharacterizedbysimpleprocessingelements,localinterconnectandmassiveparallelism.ThesearchitecturesareagoodmatchformanyimageandvideoprocessingapplicationsandcanbesubstantiallyacceleratedwithReconfigurableComputers.Wepresentaflexiblesoftware/hardwareframeworkfordesign,implementationandautomaticsynthesisofcellularimageprocessingalgorithms.Thesystemprovidesanextremelyflexiblesetofparallel,pipelinedandtime-multiplexedcomponentswhichcanbetailoredthroughreconfigurablehardwareforparticularapplications.Themostnovelaspectsofourframeworkincludeahighlypipelinedarchitectureformulti-scalecellularimageprocessingaswellassupportforseveraldifferentpatternrecognitionapplications.Inthispaper,wewilldescribethesystemindetailandpresentourperformanceassessments.Thesystemachievedspeed-upofatleast100×
forcomputationallyexpensivesub-problemsand10×
forend-to-endapplicationscomparedtosoftwareimplementations.
2.Background
2.1.Typicalneighborhoodfunctions
2.2.Implementingneighborhoodfunctions
2.2.1.Dataparallel
2.2.2.Instructionparallel
3.Systemoverview
3.1.Networkspecificationfile
3.2.Networkparameterfile
4.Hardwareoverview
4.1.HardwareAPI
4.2.SoftwareAPI
5.Hardwarecomponents
5.1.Neighborhoodmemoryaccess
5.2.Neighborhoodfunctions
5.2.1.Convolution
5.2.2.Morphology
5.2.3.Threshold
5.3.Datasequencing
5.3.1.Downsampling
5.3.2.Streamsplitting
5.3.3.Streammixing
5.3.4.Upsampling
5.4.Parametermodule
6.Applicationcasestudies
6.1.ApplicationI
6.2.ApplicationII
7.Conclusion
$35.95
239
APHID:
Anarchitectureforprivate,high-performanceintegrateddatamining
FutureGenerationComputerSystems,Volume26,Issue7,July2010,Pages891-904
JimmySecretan,MichaelGeorgiopoulos,AnnaKoufakou,KelCardona
Whiletheemergingfieldofprivacypreservingdatamining(PPDM)willenablemanynewdataminingapplications,itsuffersfromseveralpracticaldifficulties.PPDMalgorithmsarechallengingtodevelopandcomputationallyintensivetoexecute.DevelopersneedconvenientabstractionstosimplifytheengineeringofPPDMapplications.Theindividualpartiesinvolvedinthedataminingprocessneedawaytobringhigh-performance,parallelcomputerstobearonthecomputationallyintensivepartsofthePPDMtasks.ThispaperdiscussesAPHID(ArchitectureforPrivateandHigh-performanceIntegratedDatamining),apracticalarchitectureandsoftwareframeworkfordevelopingandexecutinglargescalePPDMapplications.Atonetier,thesystemsupportssimplifieduseofclusterandgridresources,andatanothertier,thesystemabstractscommunicationforeasyPPDMalgorithmdevelopment.ThispaperoffersadetailedanalysisofthechallengesindevelopingPPDMalgorithmswithexistingframeworks,andmotivatesthedesignofanewinfrastructurebasedonthesechallenges.
2.Distributedandprivacypreservingdatamining
3.Background/relatedwork
3.1.Highperformanceparalleldataminingonclustersandgrids
3.2.Distributeddatamining
3.2.1.Agent-basedapproachesforDDM
3.3.DDMmiddleware
3.3.1.WebservicesforDDM
3.4.ArchitecturestosupportPPDM
4.PPDMpreliminaries
5.APHID
5.1.Developmentmodel
5.1.1.Programstructure
5.1.2.Sharedvariables
5.2.Mainexecutionlayer
5.3.High-performancecomputingservices
5.4.PPDMservices
5.5.Datamanagementbetweenlayersandparties
6.Examplealgorithmimplementation
6.1.Notation
6.2.Example:
privacypreservingNaï
veBayesclassifier
6.2.1.Securesum
6.2.2.Calculatingfrequencyofattributes
7.Performanceresults
8.Discussion
9.Conclusionsandfuturework
Vitae
$19.95
240
Perspectivesforprocesssystemsengineering—Personalviewsfromacademiaandindustry
Computers&
ChemicalEngineering,Volume33,Issue3,20March2009,Pages536-550
Karsten-UlrichKlatt,WolfgangMarquardt
Processsystemsengineering(PSE)hasbeenanactiveresearchfieldforalmost50years.Itsmajorachievementsincludemethodologiesandtoolstosupportprocessmodeling,simulationandoptimization(MSO).Mature,commerciallyavailabletechnologieshavebeenpenetratingallfieldsofchemicalengineeringinacademiaaswellasinindustrialpractice.MSOtechnologieshavebecomeacommodity,theyarenotadistinguishingfeatureofthePSEfieldanymore.Consequently,PSEhastoreassessandtorepositionitsfutureresearchagenda.Emphasisshouldbep