平行线的判定性质公理及定理文档格式.docx
《平行线的判定性质公理及定理文档格式.docx》由会员分享,可在线阅读,更多相关《平行线的判定性质公理及定理文档格式.docx(6页珍藏版)》请在冰豆网上搜索。
考点一
平行线的判定公理
1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
2.两条平行线被第三条直线所截,同位角相等.
注意:
证明两直线平行,关键是找到与特征结论相关的角.
例1.如下图,当∠1=∠3时,直线a、b平行吗?
当∠2+∠3=180°
时,直线a、b平行吗?
为什么?
你有几种方法。
例2.请将下面的空补充完整
1.如右图,若∠1=∠2,则_______∥_______()
若∠3=∠4,则_________∥_________()
若∠5=∠B,则_________∥_________()
若∠D+∠DAB=180°
,则______∥_______()
2.如右图,∠1+∠2=180°
(已知)
∠3+∠2=180°
()
∴∠1=_________
∴AB∥CD()
课堂练习:
1.如图6-21,已知∠B=142°
∠BFE=38°
∠EFD=40°
∠D=140°
求证:
AB∥CD.
2.已知,如下图
(1),
(2),直线AB∥ED.
∠ABC+∠CDE=∠BCD.
(1)
(2)
3.如图,如果AB∥CD,求角
、β、γ与180º
之间的关系式.
4.如图,已知CD是∠ACB的平分线,∠ACB=500,∠B=700,DE∥BC,
求:
∠EDC和∠BDC的度数。
达标训练:
一.选择题
1.下列命题中,不正确的是()
A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行
C.两条直线被第三条直线所截,那么这两条直线平行
D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行
2.如右图,直线a、b被直线c所截,现给出下列四个条件:
()
(1)∠1=∠2,
(2)∠3=∠6,(3)∠4+∠7=180°
,(4)∠5+∠8=180°
,
其中能判定a∥b的条件是()
A.
(1)(3)B.
(2)(4)C.
(1)(3)(4)D.
(1)
(2)(3)(4)
3.如右图,如果∠1=∠2,那么下面结论正确的是()
A.AD∥BCB.AB∥CD
C.∠3=∠4D.∠A=∠C
4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()
A.第一次向右拐40°
,第二次向左拐40°
B.第一次向右拐50°
,第二次向左拐130°
C.第一次向右拐50°
,第二次向右拐130°
D.第一次向左拐50°
二.填空题
5.如右图,∠1=∠2=∠3,则直线l1、l2、l3的关系是________.
6.如果两条直线被第三条直线所截,一组同旁内角的度数之比
为3∶2,差为36°
,那么这两条直线的位置关系是________.
7.同垂直于一条直线的两条直线________.
8.根据图形及上下文的含义推理并填空.
公理:
两直线平行,同位角相等.
定理:
两直线平行,内错角相等.
两直线平行,同旁内角互补.
例1.如图,BE∥DF,∠B=∠D,求证.AD∥BC.
课堂作业:
1.如上图,AB∥CD,AD∥BC则下列结论成立的是()
A.∠A+∠C=180°
B.∠A+∠B=180°
C.∠B+∠D=180°
D.∠B=∠D
2.若两个角的一边在同一条直线上,另一边互相平行,那么这两个角的关系是()
A.相等B.互补C.相等或互补D.相等且互补
3.如右图,已知∠1=∠2,∠BAD=57°
,则∠B=________.
4.已知:
如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:
∠1=∠2.
5.如图所示,已知AB⊥BD于点B,ED⊥BD
于点D,且AB=CD,BC=DE,那么AC与CE
有什么关系?
写你的猜想,并说明理由
6、如图所示:
已知:
AB∥DE。
⑴猜测∠A、∠ACD、∠D有什么关系?
并证明你的结论。
⑵若点C向右移动到线段AD的右侧,此时∠A、∠ACD、∠D之间的关系,仍然满足⑴中的结论吗?
若符合,请你证明,若不符,请你写出正确的结论并证明。
要求画出相应的图形。
考点三:
三角形内角和证明
1.如图1,延长BC,过C作CE∥AB
2.如图2,过A作EF∥AB
3.如图3,过A作AD∥BC。
利用同旁内角之和为180度
4.如图4,在BC边上任取一点D,作DE∥AB,DF∥AC。
根据上图辅助线的做法用四种方法证明三角形内角和180°
例1.△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,
如图,求∠DBC的度数。
例2.已知,△ABC中,AD是高,E是AC边上一点,BE与AD交于点F,∠ABC=45°
,∠BAC=75°
,∠AFB=120°
.求证:
BE⊥AC.
巩固训练:
1.如果三角形的三个内角都相等,那么每一个角的度数等于_______.
2.在△ABC中,若∠A=65°
∠B=∠C,则∠B=_______.
3.两条平行线被第三条直线所截,那么一组同旁内角的平分线()
A.相互重合B.互相平行
C.相互垂直D.无法确定相互关系
4.如图,AB∥CD,∠A=35°
∠C=80°
那么∠E等于()
A.35°
B.45°
C.55°
D.75°
5.如图,△ABC中,∠B=∠ACB,CD是高,
求证.∠BCD=
∠A.
6.已知,如图,△ABC中,∠C>
∠B,AD⊥BC于D,AE平分∠BAC.
求证.∠DAE=
(∠C-∠B).
达标检测:
1.如右图,下列推理正确的是()
A.∵MA∥NB,∴∠1=∠3B.∵∠2=∠4,∴MC∥ND
C.∵∠1=∠3,∴MA∥NBD.∵MC∥ND,∴∠1=∠3
2.在△ABC中,∠A=50°
,∠B、∠C的平分线交于O点,则∠BOC等于()
A.65°
B.115°
C.80°
D.50°
3.如图,已知∠ADE=∠B,∠1=∠2,FG⊥AB,求证CD⊥AB
证明.∠ADE=∠B()
∴DE∥_______()
∠1=_______()
∵∠1=∠2()
∴∠2=∠3()
4.△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则∠A=_______,∠B=_______,∠C=_______.