《计量经济学》报告Word文件下载.docx
《《计量经济学》报告Word文件下载.docx》由会员分享,可在线阅读,更多相关《《计量经济学》报告Word文件下载.docx(85页珍藏版)》请在冰豆网上搜索。
Y
X1
X2
X3
X4
X5
年份
生产总值(亿元)
工业总产值(亿元)
建筑业总产值
(亿元)
固定资产投资
财政收入
资本形成总额
1978
272.81
207.47
5.55
27.91
190.67
47.96
1979
286.43
216.62
13.98
35.58
192.75
43.61
1980
311.89
230.87
17.07
45.43
198.85
66.52
1981
324.76
237.12
18.03
54.60
204.52
76.68
1982
337.07
240.75
21.56
71.34
200.69
90.27
1983
351.81
246.26
24.64
75.94
204.34
71.86
1984
390.85
263.19
30.62
92.30
215.79
101.63
1985
466.75
311.12
36.73
118.56
263.86
189.13
1986
490.83
318.89
49.91
146.93
257.72
228.12
1987
545.46
336.54
59.45
186.30
241.36
241.02
1988
648.30
399.53
68.83
245.27
261.69
335.56
1989
696.54
432.92
74.75
214.76
297.25
351.68
1990
781.66
469.83
75.62
227.08
284.36
331.34
1991
893.77
514.79
84.30
258.30
324.66
340.03
1992
1114.32
636.68
117.68
357.38
340.10
487.63
1993
1519.23
846.71
193.00
653.91
429.53
744.11
1994
1990.86
1074.37
309.68
1123.29
615.91
1161.49
1995
2499.43
1308.20
391.42
1601.79
702.46
1567.72
1996
2957.55
1452.79
450.41
1952.05
873.76
1956.84
1997
3438.79
1598.91
564.37
1977.59
1070.95
2048.95
1998
3801.09
1670.19
593.11
1964.83
1146.00
2010.75
1999
4188.73
1787.98
573.06
1856.72
1390.58
1970.24
2000
4771.17
1998.96
631.64
1869.67
1752.69
2169.72
2001
5210.12
2166.74
730.33
1994.73
1995.63
2356.71
2002
5741.03
2368.02
822.27
2187.06
2202.62
2531.29
2003
6694.23
2941.24
1195.80
2452.11
2828.87
3076.68
2004
8072.83
3593.25
1724.40
3084.66
3591.73
3782.25
2005
9164.10
4129.52
1889.25
3542.55
4095.81
4186.86
2006
10366.37
4670.11
2285.38
3825.09
4798.39
4762.86
2007
12188.85
5298.08
2524.18
4458.61
7310.26
5568.49
2008
13698.15
5784.99
3071.76
4829.54
7532.91
6118.70
表一
2.在解释变量与被解释变量之间一一做散点图
由散点图可看出,被解释变量Y与解释变量X1、X2、X3、X4、X5之间基本存在着线性关系,所以初步估计我所要建立模型是直线模型。
五.模型估计
(一)模型初步估计与检验
根据经验,我们认为所选各个解释变量对被解释变量效果都是明显,所以设立初始模型为:
Y=β0+β1X1+β2X2+β3X3+β4X4+β5X5+μ
模型回归分析
描述性
Mean
3362.090
1540.408
599.8316
1339.835
1484.410
1581.168
Median
1519.230
846.7100
193.0000
653.9100
429.5300
744.1100
Maximum
13698.15
5784.990
3017.760
4829.540
7532.910
6118.700
Minimum
281.8100
207.4700
5.550000
27.91000
190.6700
43.61000
Std.Dev.
3830.758
1621.459
829.9391
1440.748
2013.599
1758.742
Skewness
1.288344
1.291737
1.610665
0.918076
1.885129
1.128813
Kurtosis
3.632626
3.591193
4.495798
2.788727
5.696585
3.288217
Jarque-Bera
9.092735
9.072470
16.29358
4.412453
27.75327
6.690758
Probability
0.010606
0.010714
0.000290
0.110115
0.000001
0.035247
Observations
31
协方差
2544319.718
1291632.34478
2225010.04951
3086122.78013
2748140.56823
6003128.92608
666579.610865
1113326.82797
1595316.3839
1386068.28014
3043664.80446
2008794.41272
2633360.55278
2441358.76823
5248970.0796
3923788.86254
3300846.90654
7302749.60596
2993394.80724
6486588.05668
14201332.5362
相关系数
1
0.991806744904
0.984188733549
0.976730036548
0.995797658989
0.998682133289
0.962119276079
0.986433919819
0.981243090642
0.989250460624
0.937971763544
0.995593056816
0.982747172244
0.963142543318
0.978293226208
0.994877866827
(二)模型分析
(1)五元模型
1.建立五元模型:
做回归分析如下表所示:
DependentVariable:
Y
Method:
LeastSquares
Date:
12/15/09Time:
20:
01
Sample:
19782008
Includedobservations:
31
Variable
Coefficient
Std.Error
t-Statistic
Prob.
C
-305.1266
93.16192
-3.275228
0.0031
2.107869
0.452537
4.657892
0.0001
-1.135748
0.425322
-2.670324
0.0131
-0.721890
0.551740
-1.308389
0.2026
0.232554
0.114804
2.025668
0.0536
1.090019
0.782274
1.393399
0.1758
R-squared
0.998257
Meandependentvar
3362.090
AdjustedR-squared
0.997909
S.D.dependentvar
3830.758
S.E.ofregression
175.1709
Akaikeinfocriterion
13.34139
Sumsquaredresid
767120.8
Schwarzcriterion
13.61893
Loglikelihood
-200.7915
F-statistic
2864.439
Durbin-Watsonstat
1.069287
Prob(F-statistic)
0.000000
2.根据Durbin-Watson检验对该模型进行自相关检验。
根据DW检验结果表明,在95%置信概率下,n=31,k=元数+1=6(包含常数项)查表得dl=1.09,du=1.83。
DW值落在此区间dU=1.83<
D.W<
4-du=2.17则不存在自相关。
0<
DW<
1.83存在正自相关,2.17<
4则存在负自相关。
01.091.832.172.914
正自相关无自相关负自相关
由回归分析可看出DW=1.069287,故存在自相关。
3.异方差检验
采用夸特法对模型进行整体检验:
n=31,c=n/4=31/4≈7
先分别对X1,X2,X3,X4,X5排序,删除中间n/4(7)行数据,将数据分为上下两组,分别作回归分析,求出各组
,小定位为小
大定位为大
。
因为(n-c)/2-(元数+1)=6,查表得
(6,6)=4.28。
排序
大
小
F-statistic
临界值
是否存在异方差
DW
252841.7
325.2035
777.4876
4.28
是
1.069287存自相关
240649.4
174.2758
1380.8538
416.7554
606.6909
由上表可知,
均大于
(6,6)=4.28,所以存在异方差,需要对异方差进行处理。
4.异方差处理
对数据进行调整:
e=abs(resid);
Y1=Y/e;
X11=X1/e;
X22=X2/e;
X33=X3/e;
X44=X4/e;
X55=X5/e;
C1=1/e
c1
x11
x22
x33
x44
x55
y1
0.011883
2.611334
0.069855
0.351291
2.39988
0.603651
3.547019
0.012587
2.574154
0.166128
0.422807
2.2905
0.518229
3.403725
0.015673
3.618428
0.267538
0.712025
3.116578
1.042569
4.888255
0.010548
3.667396
0.328428
1.086737
3.057154
1.375102
5.134659
0.017002
2.597435
0.259891
0.80098
2.155283
0.757946
3.710728
0.015233
4.031512
0.306546
0.928309
3.477247
1.303713
5.521566
0.012166
3.201943
0.37252
1.122913
2.62528
1.230337
4.755042
-0.04143
13.8114
2.439792
7.64564
9.905269
9.891316
22.38535
-0.04533
-14.4566
-2.26262
-6.66093
-11.6835
-10.3416
-22.2513
0.041039
-6.64522
-1.14482
-4.07948
-4.35258
-5.58123
-10.7829
-0.01234
-12.8895
-1.5217
-4.91185
-10.9315
-7.83551
-19.3371
-0.01663
-5.79767
-0.93315
-2.80215
-3.50898
-4.08871
-9.64563
-0.01994
-3.50808
-0.60572
-1.74026
-2.4087
-2.84976
-5.64427
-0.0081
-10.2658
-1.68109
-5.15096
-6.47429
-6.7808
-17.8233
-0.00706
-4.49742
-0.83128
-2.52448
-2.40242
-3.44455
-7.87141
-0.00555
-4.70054
-1.07145
-3.63021
-2.38455
-4.13096
-8.43407
-0.00464
-4.98979
-1.43827
-5.217
-2.86053
-5.39441
-9.24633
-0.00446
-5.83257
-1.74513
-7.14153
-3.1319
-6.98963
-11.1436
-0.00465
-6.75444
-2.09409
-9.07564
-4.06236
-9.09791
-13.7505
0.004078
-39.7336
-14.0248
-49.1439
-26.6136
-50.9173
-85.4554
0.004557
7.611636
2.703008
8.954412
5.22272
9.163686
17.32289
-0.02485
7.29064
2.336701
7.570933
5.670207
8.03382
17.0799
0.006361
12.71617
4.01811
11.89371
11.14955
13.80244
30.35129
0.005419
11.74149
3.957633
10.80937
10.81425
12.77093
28.23346
0.003378
7.999933
2.777892
7.388592
7.441159
8.551512
19.39505
-0.01196
-35.1748
-14.3008
-29.3252
-33.831
-36.7946
-80.0576
0.030037
107.9287
51.79495
92.74251
107.883
113.6056
242.4796
-0.02063
-85.19
-38.9743
-73.0811
-84.4946
-86.3729
-189.051
-0.00813
-37.9469
-18.5698
-31.0807
-38.9892
-38.7005
-84.2317
-0.00279
-14.79