新能源的理论与实际应用.docx

上传人:b****1 文档编号:1761659 上传时间:2022-10-23 格式:DOCX 页数:6 大小:22.86KB
下载 相关 举报
新能源的理论与实际应用.docx_第1页
第1页 / 共6页
新能源的理论与实际应用.docx_第2页
第2页 / 共6页
新能源的理论与实际应用.docx_第3页
第3页 / 共6页
新能源的理论与实际应用.docx_第4页
第4页 / 共6页
新能源的理论与实际应用.docx_第5页
第5页 / 共6页
点击查看更多>>
下载资源
资源描述

新能源的理论与实际应用.docx

《新能源的理论与实际应用.docx》由会员分享,可在线阅读,更多相关《新能源的理论与实际应用.docx(6页珍藏版)》请在冰豆网上搜索。

新能源的理论与实际应用.docx

新能源的理论与实际应用

新能源的理论与实际应用

定义

  新能源又称非常规能源。

是指传统能源之外的各种能源形式。

指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。

分类

  新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能。

包括了太阳能、风能、生物质能、地热能、核聚变能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。

也可以说,新能源包括各种可再生能源和核能。

相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。

同时,由于很多新能源分布均匀,对于解决由能源引发的战争也有着重要意义。

  据世界断言,石油,煤矿等资源将加速减少。

核能、太阳能即将成为主要能源。

  联合国开发计划署(UNDP)把新能源分为以下三大类:

大中型水电;新可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能(潮汐能);穿透生物质能。

  一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。

因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。

随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。

  新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。

当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。

  按类别可分为:

太阳能风力发电生物质能生物柴油燃料乙醇新能源汽车燃料电池氢能垃圾发电建筑节能地热能二甲醚可燃冰等。

新能源概况

  据估算,每年辐射到地球上的太阳能为17.8亿千瓦,其中可开发利用500~1000亿度。

但因其分布很分散,目前能利用的甚微。

地热能资源指陆地下5000米深度内的岩石和水体的总含热量。

其中全球陆地部分3公里深度内、150℃以上的高温地热能资源为140万吨标准煤,目前一些国家已着手商业开发利用。

世界风能的潜力约3500亿千瓦,因风力断续分散,难以经济地利用,今后输能储能技术如有重大改进,风力利用将会增加。

海洋能包括潮汐能、波浪能、海水温差能等,理论储量十分可观。

限于技术水平,现尚处于小规模研究阶段。

当前由于新能源的利用技术尚不成熟,故只占世界所需总能量的很小部分,今后有很大发展前途。

常见新能源形式概述

  太阳能

  太阳能一般指太阳光的辐射能量。

太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式

  广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。

  利用太阳能的方法主要有:

太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。

  太阳能可分为3种:

  1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。

由于没有活动的部分,故可以长时间操作而不会导致任何损耗。

简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。

光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。

近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。

  2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。

除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。

  3.太阳光合能:

植物利用太阳光进行光合作用,合成有机物。

因此,可以人为模拟植物光合作用,大量合成人类需要的有机物,提高太阳能利用效率。

  核能

  核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2;,其中E=能量,m=质量,c=光速常量。

核能的释放主要有三种形式:

  A.核裂变能

  所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量

  B.核聚变能

  由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。

  C.核衰变

  核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用

  核能的利用存在的主要问题:

  

  

(1)资源利用率低

  

(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决

  (3)反应堆的安全问题尚需不断监控及改进

  (4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制

  (5)核电建设投资费用仍然比常规能源发电高,投资风险较大

  海洋能

  海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。

这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。

  波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。

目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。

大型波浪发电机组也已问世。

我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。

  潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。

世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。

中国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。

  风能

  风能是太阳辐射下流动所形成的。

风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。

  风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展,利用风来做其它的事情。

  1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。

该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。

到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。

  生物质能

  生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。

生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。

地球上的生物质能资源较为丰富,而且是一种无害的能源。

地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。

  生物质能利用现状

  2006年底全国已经建设农村户用沼气池1870万口,生活污水净化沼气池14万处,畜禽养殖场和工业废水沼气工程2,000多处,年产沼气约90亿立方米,为近8000万农村人口提供了优质生活燃料。

  中国已经开发出多种固定床和流化床气化炉,以秸秆、木屑、稻壳、树枝为原料生产燃气。

2006年用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处,年生产生物质燃气2,000万立方米。

  地热能

  地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。

放射性热能是地球主要热源。

我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。

  氢能

  在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪最理想的新能源。

氢能可应用于航天航空、汽车的燃料,等高热行业。

  海洋渗透能  

  如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。

江河里流动的是淡水,而海洋中存在的是咸水,两者也存在一定的浓度差。

在江河的入海口,淡水的水压比海水的水压高,如果在入海口放置一个涡轮发电机,淡水和海水之间的渗透压就可以推动涡轮机来发电。

  海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭。

而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、死海、我国盐城市的大盐湖、美国的大盐湖。

当然发电厂附近必须有淡水的供给。

据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度。

  水能

  水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。

广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。

是常规能源,一次能源。

水不仅可以直接被人类利用,它还是能量的载体。

太阳能驱动地球上水循环,使之持续进行。

地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。

随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。

目前世界上水力发电还处于起步阶段。

河流、潮汐、波浪以及涌浪等水运动均可以用来发电。

新能源的发展现状和趋势

  部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。

目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。

  国际能源署(IEA)对2000~2030年国际电力的需求进行了研究,研究表明,来自可再生能源的发电总量年平均增长速度将最快。

IEA的研究认为,在未来30年内非水利的可再生能源发电将比其他任何燃料的发电都要增长得快,年增长速度近6%在2000~2030年间其总发电量将增加5倍,到2030年,它将提供世界总电力的4.4%,其中生物质能将占其中的80%。

  目前可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。

可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。

但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。

  我国政府高度重视可再生能源的研究与开发。

国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。

近年来在国家的大力扶持下,我国在风力发电、海洋能潮汐发电以及太阳能利用等领域已经取得了很大的进展。

  新能源(或称可再生能源更贴切)主要有:

太阳能、风能、地热能、生物质能等。

生物质能在经过了几十年的探索后,国内外许多专家都表示这种能源方式不能大力发展,它不但会抢夺人类赖以生存的土地资源,更将会导致社会不健康发展;地热能的开发和空调的使用具有同样特性,如大规模开发必将导致区域地面表层土壤环境遭到破坏,必将引起再一次生态环境变化;而风能和太阳能对于地球来讲是取之不尽、用之不竭的健康能源,他们必将成为今后替代能源主流。

  太阳能发电具有布置简便以及维护方便等特点,应用面较广,现在全球装机总容量已经开始追赶传统风

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 生物学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1