大学数学概率统计概念定义归纳Word文档下载推荐.docx

上传人:b****6 文档编号:17521225 上传时间:2022-12-07 格式:DOCX 页数:8 大小:18.58KB
下载 相关 举报
大学数学概率统计概念定义归纳Word文档下载推荐.docx_第1页
第1页 / 共8页
大学数学概率统计概念定义归纳Word文档下载推荐.docx_第2页
第2页 / 共8页
大学数学概率统计概念定义归纳Word文档下载推荐.docx_第3页
第3页 / 共8页
大学数学概率统计概念定义归纳Word文档下载推荐.docx_第4页
第4页 / 共8页
大学数学概率统计概念定义归纳Word文档下载推荐.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

大学数学概率统计概念定义归纳Word文档下载推荐.docx

《大学数学概率统计概念定义归纳Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《大学数学概率统计概念定义归纳Word文档下载推荐.docx(8页珍藏版)》请在冰豆网上搜索。

大学数学概率统计概念定义归纳Word文档下载推荐.docx

事件是人们根据自己的喜爱定义的,而事件发生与否是与某次试验关联着的。

有两个特殊的事件:

样本空间本身,每次试验一定发生,称为是必然事件;

空集也是Ω的子集,也能称为事件,每次试验一定不会发生,称为不可能事件。

事件域:

我们希望随机试验所涉及的所有事件作为集合的运算所得到的结果还是事件,这就是所谓运算的封闭性。

随机试验的事件构成的集合类如果对最多经“可列无限多”次事件的运算的结果还是事件,则把这个集合类称为事件域。

约定随机试验的事件构成事件域,通常记为F。

事件的概率

定义在事件域F上的集函数P,满足非负性、规性、和可列可加性。

概率统计定义:

随机事件A发生的可能性大小,称为事件A的概率。

概率公理化定义:

设E为随机试验,S为它的样本空间,对于E中的每一事件A,恰对应一个实数,记作P(A),若它满足下列3个条件,则称P(A)为事件A的概率。

1.非负性:

0≤P(A)≤1;

2.规性:

P(A)=1;

2.可列可加性:

设A1,A2,….An…..是两两互不相容事件,则有

 

古典概型:

设随机试验具有下面两个特性:

1.试验的样本空间只包含有限个元素;

2.试验中每个基本事件发生的可能性相同。

则称这种随机试验为等可能概型或古典概型。

2.(基本理论)

事件的运算及运算定律

事件的三种基本运算:

求和:

和事件,两个事件A和B中至少有一个发生的事件。

记作A∪B=(x|x∈A或x∈B)或A+B

求积:

积事件:

事件A与事件B同时发生的事件,记作A∩B=(x|x∈A且x∈B)或AB

求逆:

对立事件,若A∪B=S且AB=∅,则事件A与事件B互为逆事件,事件A域事件B必有一个发生且只有一个发生。

记为

事件的三种关系运算:

相等:

若A

包含:

互斥;

事件A和事件B不能同时发生,即AB=∅。

事件的运算定律:

交换律:

A∪B=B∪A,AB=BA

结合律:

分配律:

德摩根律:

易证等式

概率的运算性质:

3.(基本方法):

利用袋中摸球模型来为古典概型问题构造场景。

球可以有不同标号和不同颜色,摸球可分为有放回摸球和无放回摸球。

二、条件概率与事件的独立性

1.基本概念

条件概率:

设A,B是两个事件,且P(A)>0,则称P(B丨A)=

为在事件A发生的条件下事件B发生的条件概率。

同理,当P(B)>0时,也可类似地定义在事件B发生的条件下事件A发生的条件概率:

P(A丨B)=

事件的独立性

定义:

设A,B为两个事件,如果等式P(AB)=P(A)P(B)成立,则称事件A与B相互独立

定理:

设事件A与B相互独立,则A与B、A与B、A与B这3对事件也相互独立

事件类的独立性(略)

2.基本理论

两个事件类是独立的可推出他们各自生成的事件域也是相互独立的。

由条件概率演绎出乘法公式:

对任意两个事件A,B若P(B)>0,则有

P(AB)=P(B)P(A丨B)

类似地,若P(A)>0,有P(AB)=P(A)P(B丨A)

全概率公式与贝叶斯公式及其推导

全概率公式:

设事件B1,B2,...,Bn为样本空间S的一个完备事件组,则对任意事件A⊆S,有

贝叶斯公式:

设事件组B1,B2,...Bn为样本空间Ω的一个完备事件组,则对任意事件A⊆Ω,当P(A)>0,P(Bi)>0时,有

3.基本方法

利用全概率公式计算概率

利用全概率公式简化贝叶斯公式

三、随机变量及其分布

随机变量:

设随机试验E的样本空间为S=(e),如果对于每个e∈S,都有一个实数X(e)与它对应,则称S上的实值单值函数X(e)为随机变量,记作X=X(e).

离散型随机变量及其分布律

离散型随机变量定义:

随机变量X的所有可能取值是有限个或可列无限多个时称为X为离散型随机变量

两点分布:

设随机变量X只可能取0和1两个值,则称其分布律为

适合:

合格不合格,性别登记,发芽不发芽,下雨不下雨等只有两种结果的现象

二项分布:

泊松分布:

设随机变量X所有可能取的值为0,1,2…,且概率分布为

其中,λ>0是常数,则称X服从参数为λ的泊松分布,记作X~π(λ)

交换台一定时间收到的呼叫次数,一本书一页中印刷错误次数,

原子一定时间放射的粒子数,超市一定时间的顾客数。

连续型随机变量及其概率密度函数

设F(x)是随机变量X的分布函数,如果存在非负函数f(x),使得对于任

意实数x均有

则称X为连续型随机变量,f(x)为X的概率密度函数或密度函数。

均匀分布:

设连续型随机变量X的概率密度为

则称随机变量X在区间(a,b)上服从均匀分布,记作X~U(a,b)

指数分布:

若随机变量X具有概率密度

其中,θ>0,为常数,则称X服从参数为θ的指数分布

常用于可靠性统计研究,如电子元件寿命,随机服务系统的服务时间等。

正态分布:

若连续型随机变量X的概率密度为

其中,μ和σ(σ>0)都是常数,则称X服从参数为μ和σ的正态分布或高斯分布

分布函数的定义及性质

设X是一个随机变量,x是任意实数,函数F(x)=P(X≤x)(-∞<x<+∞)

称为X的分布函数。

性质:

分布律的定义及性质

设离散型随机变量X所有可能取值为Xk(k=1,2…),X取各个可能值的概

律即事件(X=Xk)的概率为

则称为离散型随机变量X的概率分布或分布律,可以表示为:

密度函数的定义及性质

证明几何分布和指数分布的无记忆性

若X服从参数为θ的指数分布,则其分布函数为

服从指数分布的随机变量X具有一下有趣的性质:

对于任意s,t>0有

这条性质称为“无记忆性”

利用分布函数,分布律,密度函数计算概率;

求随机变量的线性函数的概率分布;

利用标准正态分布表计算一般正态分布的概率

四、随机变量的数字特征

数学期望

离散型随机变量的数学期望

设离散型随机变量X的概率分布为P(X=xk)=pk(k=1,2,...),称

∑xkpk=x1p1+x2p2+...+xkpk+...为随机变量X的数学期望,简称期望或均值,记作E(X)。

连续型随机变量的数学期望

设X是连续性随机变量,其密度函数为f(x),若积分∫xf(x)dx绝对收敛,则称此积分∫xf(x)dx的值为X的数学期望,即E(X)=∫xf(x)dx

随机变量函数的数学期望

设g(x)为连续函数,Y=g(X)也是随机变量X的函数

(1)若离散型随机变量X的概率分布为P(X=xk)=pk(k=1,2,...)则随机变量函数Y的数学期望为E(Y)=E[g(X)]=∑g(xk)pk

(2)若连续性随机变量X的概率密度为f(x),则随机变量函数Y的数学期望为

E(Y)=E[g(X)]=∫g(x)f(x)dx

方差

设X是一个随机变量,若E{[X-E(X)]2}存在,称E{[X-E(X)]2}为X的方差,记作D(X),即D(X)=E{[X-E(X)]2}

数学期望的性质

1.E(C)=C(C为任意常数)

2.E(CX)=CE(X)

3.E(X+Y)=E(X)+E(Y)

4.若X,Y相互独立,则E(XY)=E(X)E(Y)

方差的性质

1.设C是常数,则D(C)=0

2.若C是常数,则D(CX)=C2D(X)

3.设X与Y是两个随机变量,则D(X+Y)=D(X)+D(Y)+2{[X-E(X)][Y-E(Y)]};

若X与Y相互独立,则D(X+Y)=D(X)+D(Y)

熟练计算所给出的概率分布的数学期望和方差

利用定义计算简单的随机变量函数的数学期望

五、多维随机变量

多维随机变量:

一般来说,设E是一个随机试验,它的样本空间是S=(e),设X1=X1(e),X2=X2(e)…Xn=Xn(e)是定义在S上的随机变量,由它们构成的一个n维向量(X1,X2…Xn)叫做n维随机向量或n维随机变量

二维随机变量联合分布函数、联合分布律、联合密度函数

二维随机变量联合分布函数:

设(X,Y)是二维随机变量,对于任意实数x和y,

二元函数F(x,y)=称为二维随机变量(X,Y)的分布函数,或者称为随机变量X和Y的联合分布函数。

联合分布律:

设二维离散型随机变量(X,Y)可能取的值是(Xi,Yi)(i,j=1,2…),记P(X=Xi,Y=Yj)为Pij,称为二维离散型随机变量(X,Y)的分布律,或随机变量X和Y的联合分布律

性质:

联合密度密度函数:

对于二维随机变量(X,Y)的分布函数F(x,y),如果存在非负

函数f(x,y)使对于任意的x,y有

则称(X,Y)是连续型的二维随机变量,函数f(x,y)称为二维随机变量(X,Y)的概

率密度或称为随机变量X和Y的联合概率密度。

二维随机变量边缘分布函数、边缘分布律、边缘密度函数

边缘分布函数:

边缘分布律:

设(X,Y)为二维离散型随机变量,分布律为P(X=Xi,Y=Yj)=Pij,由边缘分布函数得X和Y的边缘分布律分别为

通常将X和Y的边缘分布律分别记为Pi.和P.j,于是

边缘密度函数:

条件分布函数、条件分布律、条件密度函数

条件分布率:

设(X,Y)为二维离散型随机变量,并且其联合分布律为

在已知Y=Yj的条件下,X取值的条件分布是

在已知X=Xi的条件下,Y取值的条件分布是

条件密度函数:

设(X,Y)为连续型随机变量,并且其联合概率密度为f(x,y),若

对于固定的y,有fy(y)>0,则称为在Y=y的条件下X的条件概率密度,记作:

协方差与协方差矩阵

协方差:

设(X,Y)为二维随机变量,若E{[X-E(X)][Y-E(Y)]}存在,则称为其为随机变量X与Y的协方差,记作Cov(X,Y),即Cov(X,Y)=E{[X-E(x)][Y-E(y)]}

矩:

设X是随机变量,若E(X^k)(k=1,2…)存在,称它为X的k阶原点矩,简称k阶矩。

若E{[X-E(X)]^k}(k=2,3…)存在,称它为X的k阶中心距

2基本理论(略)

3.基本方法:

由联合密度函数或联合分布律求边缘密度函数、边缘分布律、条件密度函数、条件分布律;

利用分布律列表计算二维随机变量的边缘分布律、条件分布律、独立性判定;

概率计算,利用全概率公式加积分变换求二维随机变量函数的概率分布。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 从业资格考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1