第17章勾股定理全章导学案.doc

上传人:b****2 文档编号:1725627 上传时间:2022-10-23 格式:DOC 页数:15 大小:488KB
下载 相关 举报
第17章勾股定理全章导学案.doc_第1页
第1页 / 共15页
第17章勾股定理全章导学案.doc_第2页
第2页 / 共15页
第17章勾股定理全章导学案.doc_第3页
第3页 / 共15页
第17章勾股定理全章导学案.doc_第4页
第4页 / 共15页
第17章勾股定理全章导学案.doc_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

第17章勾股定理全章导学案.doc

《第17章勾股定理全章导学案.doc》由会员分享,可在线阅读,更多相关《第17章勾股定理全章导学案.doc(15页珍藏版)》请在冰豆网上搜索。

第17章勾股定理全章导学案.doc

徐闻县下桥中学八年级数学练案编制人:

李文良班级学生姓名

课题:

17.1勾股定理

(1)

【学习目标】:

1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

【学习重点】:

勾股定理的内容及证明。

【学习难点】:

勾股定理的证明。

【学习过程】

一、课前预习

1、直角△ABC的主要性质是:

∠C=90°(用几何语言表示)

(1)两锐角之间的关系:

(2)若D为斜边中点,则斜边中线

(3)若∠B=30°,则∠B的对边和斜边:

2、

(1)、同学们画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。

(2)、再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长

问题:

你是否发现+与,+和的关系,即+,+,

二、自主学习

思考:

(1)观察图1-1。

   A的面积是__________个单位面积;

   B的面积是__________个单位面积;

   C的面积是__________个单位面积。

(图中每个小方格代表一个单位面积)

(2)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?

图1-2中的呢?

(3)你能发现图1-1中三个正方形A,B,C围成的直角三角形三边的关系吗?

(4)你能发现课本图1-3中三个正方形A,B,C围成的直角三角形三边的关系吗?

(5)如果直角三角形的两直角边分别为1.6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?

说明你的理由。

由此我们可以得出什么结论?

可猜想:

命题1:

如果直角三角形的两直角边分别为a、b,斜边为c,那么__________________

_____________________________________________________________________。

三、合作探究

勾股定理证明:

方法一;

如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。

S正方形=_______________=____________________

方法二;

已知:

在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

求证:

a2+b2=c2。

分析:

左右两边的正方形边长相等,则两个正方形的面积相等。

左边S=______________

右边S=_______________

左边和右边面积相等,

即化简可得。

勾股定理的内容是:

第4题图

S1

S2

S3

四、课堂练习

1、在Rt△ABC中,,

(1)如果a=3,b=4,则c=________;

(2)如果a=6,b=8,则c=________;

(3)如果a=5,b=12,则c=________;

(4)如果a=15,b=20,则c=________.

2、下列说法正确的是(  )

A.若、、是△ABC的三边,则

B.若、、是Rt△ABC的三边,则

C.若、、是Rt△ABC的三边,,则

D.若、、是Rt△ABC的三边,,则

3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()

A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为20

4、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________.

5、一个直角三角形的两边长分别为5cm和12cm,则第三边的长为。

五、课堂小测

1.在Rt△ABC中,∠C=90°,

①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;

③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC=________。

2、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为。

3、一个直角三角形的两边长分别为3cm和4cm,则第三边的为。

4、已知,如图在ΔABC中,AB=BC=CA=2cm,AD是边BC上的高.

求①AD的长;②ΔABC的面积.

课题:

17.1勾股定理

(2)

【学习目标】:

1.会用勾股定理进行简单的计算。

2.勾股定理的实际应用,树立数形结合的思想、分类讨论思想。

【学习重点】:

勾股定理的简单计算。

【学习难点】:

勾股定理的灵活运用。

【学习过程】

一、课前预习

1、直角三角形性质有:

如图,直角△ABC的主要性质是:

∠C=90°,(用几何语言表示)

A

C

B

(1)两锐角之间的关系:

(2)若∠B=30°,则∠B的对边和斜边:

(3)直角三角形斜边上的等于斜边的。

(4)三边之间的关系:

(5)已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三边,则

c=。

(已知a、b,求c)

a=。

(已知b、c,求a)

b=。

(已知a、c,求b).

2、

(1)在Rt△ABC,∠C=90°,a=3,b=4,则c=。

B

C

1m

2m

A

实际问题

数学模型

(2)在Rt△ABC,∠C=90°,a=6,c=8,则b=。

(3)在Rt△ABC,∠C=90°,b=12,c=13,则a=。

二、自主学习

例1:

一个门框的尺寸如图所示.

①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?

②若薄木板长3米,宽1.5米呢?

③若薄木板长3米,宽2.2米呢?

(注意解题格式)

分析:

木板的宽2.2米大于1米,所以横着不能从门框内通过.

木板的宽2.2米大于2米,所以竖着不能从门框内通过.因为对角线AC的长度最大,所以只能试试斜着能否通过.所以将实际问题转化为数学问题.

三、合作探究

例2、如图,一个3米长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5米.如果梯子的顶端A沿墙下滑0.5米,那么梯子底端B也外移0.5米吗?

(计算结果保留两位小数)

分析:

要求出梯子的底端B是否也外移0.5米,实际就是求BD的长,而BD=OD-OB

O

B

D

CC

A

C

A

O

B

O

D

四、课堂练习

B

A

C

1、一个高1.5米、宽0.8米的长方形门框,需要在其相对的顶点间用一条木条加固,则需木条长为。

第2题

2、从电杆离地面5m处向地面拉一条长为7m的钢缆,则地面

钢缆A到电线杆底部B的距离为。

3、有一个边长为50dm的正方形洞口,想用一个圆盖盖住这个洞口,

圆的直径至少为(结果保留根号)

4、一旗杆离地面6m处折断,其顶部落在离旗杆底部8m处,则旗杆折断前高。

如下图,池塘边有两点A,B,点C是与BA方

向成直角的AC方向上一点.测得CB=60m,AC=20m,

你能求出A、B两点间的距离吗?

5、如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长100cm,顶端A在AC上运动,量得滑杆下端B距C点的距离为60cm,当端点B向右移动20cm时,滑杆顶端A下滑多长?

五、课堂小结

谈谈你在本节课里有那些收获?

六、课堂小测

1、若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()

A、12cmB、10cmC、8cmD、6cm

A

E

B

D

C

2、若等腰直角三角形的斜边长为2,则它的直角边的长为,斜边上的高的长为。

3、如图,在⊿ABC中,∠ACB=900,AB=5cm,BC=3cm,CD⊥AB与D。

求:

(1)AC的长;

(2)⊿ABC的面积;(3)CD的长。

课题:

17.1勾股定理(3)

【学习目标】:

1.能运用勾股定理在数轴上画出表示无理数的点,进一步领会数形结合的思想。

2.会用勾股定理解决简单的实际问题。

【学习重点】:

运用勾股定理解决数学和实际问题

【学习难点】:

勾股定理的综合应用。

A

B

C

D

【学习过程】

一、课前预习

1、

(1)在Rt△ABC,∠C=90°,a=3,b=4,则c=。

(2)在Rt△ABC,∠C=90°,a=5,c=13,则b=。

2、如图,已知正方形ABCD的边长为1,则它的对角线AC=。

二、自主学习

例:

用圆规与尺子在数轴上作出表示的点,并补充完整作图方法。

步骤如下:

1.在数轴上找到点A,使OA=;

2.作直线l垂直于OA,在l上取一点B,使AB=;

3.以原点O为圆心,以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点.

三、合作探究

例3(教材探究3)

分析:

利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。

如图,已知OA=OB,

(1)说出数轴上点A所表示的数

(2)在数轴上作出对应的点

四、课堂练习

1、你能在数轴上找出表示的点吗?

请作图说明。

2、已知直角三角形的两边长分别为5和12,求第三边。

3、已知:

如图,等边△ABC的边长是6cm。

(1)求等边△ABC的高。

(2)求S△ABC。

五、课堂小结

在数轴上寻找无理数:

①___________________②____________________③。

六、课堂小测

1、已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。

2、已知等边三角形的边长为2cm,则它的高为,面积为。

3、已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。

4、在数轴上作出表示的点。

5、已知:

在Rt△ABC中,∠C=90°,CD⊥AB于D,∠A=60°,CD=,

求线段AB的长。

课题:

17.2勾股定理逆定理

(1)

【学习目标】:

1、了解勾股定理的逆定理的证明

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学研究 > 教学计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1