三角形单元测试卷(一).doc
《三角形单元测试卷(一).doc》由会员分享,可在线阅读,更多相关《三角形单元测试卷(一).doc(4页珍藏版)》请在冰豆网上搜索。
优学好学思学乐学
三角形单元测试题
(一)
1.一定在△ABC内部的线段是( )
A.锐角三角形的三条高、三条角平分线、三条中线
B.钝角三角形的三条高、三条中线、一条角平分线
C.任意三角形的一条中线、二条角平分线、三条高
D.直角三角形的三条高、三条角平分线、三条中线
2.下列说法中,正确的是( )
A.一个钝角三角形一定不是等腰三角形,也不是等边三角形
B.一个等腰三角形一定是锐角三角形,或直角三角形
C.一个直角三角形一定不是等腰三角形,也不是等边三角形
D.一个等边三角形一定不是钝角三角形,也不是直角三角形
3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有( )A.4对B.5对C.6对D.7对
(注意考虑完全,不要漏掉某些情况)
4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )
A.锐角三角形B.钝角三角形C.直角三角形D.无法确定
5.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是( )
A.18B.15C.18或15D.无法确定
6.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有( )种
A.3B.4C.5D.6
A.180°B.360°C.720°D.540°
7.如图:
(1)AD⊥BC,垂足为D,则AD是________的高,∠________=∠________=90°;
(2)AE平分∠BAC,交BC于点E,则AE叫________,X|k|B|1.c|O|m
∠________=∠________=∠________,AH叫________;
(3)若AF=FC,则△ABC的中线是________;
(4)若BG=GH=HF,则AG是________的中线,AH是________的中线.
8.在等腰△ABC中,如果两边长分别为6cm、10cm,则这个等腰三角形的周长为________.
9.如图,△ABC中,∠ABC、∠ACB的平分线相交于点I.
(1)若∠ABC=70°,∠ACB=50°,则∠BIC=________;
(2)若∠ABC+∠ACB=120°,则∠BIC=________;
(3)若∠A=60°,则∠BIC=________;
(4)若∠A=100°,则∠BIC=________;
(5)若∠A=n°,则∠BIC=________.
10.如图,在△ABC中,∠BAC是钝角.画出:
(1)∠ABC的平分线;
(2)边AC上的中线;
(3)边AC上的高.
11.如图,AB∥CD,BC⊥AB,若AB=4cm,,求△ABD中AB边上的高.
12.学校有一块菜地,如下图.现计划从点D表示的位置(BD∶DC=2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:
如果D是BC的中点的话,由此点D笔直地挖至点A就可以了.现在D不是BC的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?
13.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.
14.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.
15.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,
(1)完成下面的证明:
∵MG平分∠BMN(),
∴∠GMN=∠BMN(),
同理∠GNM=∠DNM.
∵AB∥CD(),
∴∠BMN+∠DNM=________().
∴∠GMN+∠GNM=________.
∵∠GMN+∠GNM+∠G=________(),
∴∠G=________.
∴MG与NG的位置关系是________.
(2)把上面的题设和结论,用文字语言概括为一个命题:
新课标第一网
_______________________________________________________________.
16.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,
∠A=46°,∠D=50°.求∠ACB的度数.
17.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,
求∠BOC的度数.
18.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.
三角形单元测试题
(一)
参考答案:
1.A;2.D;3.A;4.C;5.C;6.B;7.XkB1.com
(1)BC边上,ADB,ADC;
(2)∠BAC的角平分线,BAE,CAE,BAC,∠BAF的角平分线;
(3)BF;(4)△ABH,△AGF;
8.22cm或26cm;
9.
(1)120°;
(2)120°;(3)120°;(4)140°;(5);10.略;
11.,∴AB·BC=12,AB=4,∴BC=6,
∵AB∥CD,∴△ABD中AB边上的高=BC=6cm.
12.后一种意见正确.
13.不作垂线,一个直角三角形,即:
1=2×0+1,
作一条垂线,三个直角三角形,即:
3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出时,图中共有2×k+1,即2k+1个直角三角形.
14.设三边长a=2k,b=3k,c=4k,
∵三角形周长为36,∴2k+3k+4k=36,k=4,
∴a=8cm,b=12cm,c=16cm.
15.
(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.
(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直.
16.94°17.120°18.10°;