Effects of the upper atmosphere on terrestrial and Earthspace communications Final results of the文档格式.docx
《Effects of the upper atmosphere on terrestrial and Earthspace communications Final results of the文档格式.docx》由会员分享,可在线阅读,更多相关《Effects of the upper atmosphere on terrestrial and Earthspace communications Final results of the文档格式.docx(27页珍藏版)》请在冰豆网上搜索。
Relatedarticles
Relatedreferenceworkarticles
Purchase
$31.50
327
TransformdomaintechniqueforwindowingtheDCTandDST
JournaloftheFranklinInstitute,Volume339,Issue1,January2002,Pages111-120
B.G.Sherlock,Y.P.Kakad
328
EffectsoftheupperatmosphereonterrestrialandEarth–spacecommunications:
FinalresultsoftheEUCOST271Action
AdvancesinSpaceResearch,Volume37,Issue6,2006,Pages1223-1228
B.Zolesi,Lj.R.Cander
Closepreview
AbstractAbstract|Figures/TablesFigures/Tables|ReferencesReferences
Abstract
Project“EffectsoftheUpperAtmosphereonTerrestrialandEarth–SpaceCommunications(EACOSs)”wasinauguratedasafour-year271ActionintheTelecommunicationsandInformationScienceandTechnologydomainoftheEUCOST(Co-operationintheFieldofScientificandTechnicalResearch)inOctober2000.ItfollowedtwoprevioussuccessfulActionsCOST238onPRIME(PredictionandRetrospectiveIonosphericModellingoverEurope)andCOST251onIITS(ImprovedQualityofServiceinIonosphericTelecommunicationSystemsPlanningandOperation).TheCOST271Action(EACOS)hasbeenorientedtowards:
(i)collectionofnewionosphericandplasmasphericdatafornow-castingandforecastingpurposes,(ii)developmentofmethodsandalgorithmstopredictandtominimisetheeffectsofplasmaspheric–ionosphericperturbationsandvariationsoncommunications;
(iii)performstudiesthatinfluencethetechnicaldevelopmentandtheimplementationofnewcommunicationservices,particularlyfortheGNSSandotheradvancedEarth–spaceandsatellite-to-satelliteapplications;
and(iv)disseminationandcorrelationofresults,ideasandinformationwhichwillprovideavaluablesupporttoEuropeanresearchcentresandindustry.
ThispaperreviewsthemainresultsachievedintheCOST271Actionconcerninginparticulararangeoftheionosphericspaceweatherissues,specifically:
now-casting,forecastingandwarningtools,methodsandsupportingdatabasesforionosphericpropagationprediction;
totalelectroncontentvariationsandtheiruseinthereconstructionofplasmaspheric–ionosphericstructuresasakeyparameterfornavigationerrorinGNSSapplicationsandeffectsofplanetaryandgravitywavesandgradientsoftheelectrondensityonterrestrialandsatellitecommunications.
ArticleOutline
1.Introduction
2.MainresultsofCOST271Action
3.MIERS:
mitigationofionosphericeffectsonradiosystems
4.Conclusions
References
329
Asimulationmodelofgearskiving
JournalofMaterialsProcessingTechnology,Volume146,Issue2,28February2004,Pages213-220
A.Antoniadis,N.Vidakis,N.Bilalis
Thekeycomponentsindemandingtransmissionchainsaredoubtlesslypremiumwelldesignedandproperlyfabricatedgears.Thedesiredgearqualityisperformed,throughthreemanufacturingstages,i.e.theroughcutting,theheattreatmentandthefinishingprocess.Oneofthemostadoptedmethodsingearfinishingisavariationofhobbing,theso-calledgearskivingorhardhobbing.Aseverycuttingprocessbasedontherollingprinciple,gearskivingisanexceptionalmultiparametricandcomplicatedmethod,whichcanandmustbefullyoptimized.Thispaperillustratesaninvolvedalgorithmthatsimulatesrigorouslytheskivingprocessandyieldsdata,suchasthedimensionsofthenon-deformedchipsandconsequentlythecuttingforcecomponents.Thisalgorithmissupportedbyacomputercodethatofferstheaforementionedparameters,withtheaidofauser-friendlygraphicalinterface,builtmodularandobjectoriented.Bearinginmindthatgearskivingisafinishinggearcuttingprocess,thedevelopedsoftwareinitiallyperformsthesimulationofthegearcutting,inordertodeterminethecuttingboundaryconditions.Theaimofthisresearchworkistointerpretquantitativelycuttingphenomenarelatedtothecourseofthecuttingforcecomponentsandisextendabletopredictthewearprogressofcomplexandexpensivecuttingtools.Inthisway,theoptimizationofthecuttingprocessisenabled.
2.Gearskivingfeaturesandsimulationstrategy
3.Determinationofthechipdimensionswiththeaidofhardcutprofiles
4.Coordinatesystems
5.Determinationofchipformationingearskiving
6.Cuttingforcecomponentsdeterminationandcomparisonbetweenanalyticalandexperimentalresults
7.Conclusions
$37.95
330
Open-hardwaree-puckLinuxextensionboardforexperimentalswarmroboticsresearch
MicroprocessorsandMicrosystems,Volume35,Issue1,February2011,Pages60-67
WenguoLiu,AlanF.T.Winfield
InthispaperwedescribetheimplementationofaLinuxextensionboardforthee-puckeducationalmobilerobot,designedtoenhancethecomputation,memoryandnetworkingperformanceoftherobotatverylowcost.Theextensionboardisbasedona32-bitARM9microprocessorandprovideswirelessnetworksupport.TheARM9extensionboardrunsinparallelwiththedsPICmicroprocessoronthee-puckmotherboardwithcommunicationbetweenthetwoviaanSPIbus.Theextensionboardisdesignedtohandlecomputationallyintensiveimageprocessing,wirelesscommunicationandhigh-levelintelligentrobotcontrolalgorithms,whilethedsPIChandleslow-levelsensorinterfacing,dataprocessingandmotorcontrol.TheextensionboardrunsanembeddedLinuxoperatingsystem,alongwithaDebian-basedportoftherootfilesystemstoredinaMicroSDcard.Theextendede-puckrobotplatformrequiresminimalefforttointegratethewell-knownopen-sourcerobotcontrolframeworkPlayerand,whenplacedwithinaTCP/IPnetworkedinfrastructure,providesapowerfulandflexibleplatformforexperimentalswarmroboticsresearch.
2.Hardware
2.1.Microcontrollerunit
2.2.Memory
2.3.Low-leveldebugginginterfaces
3.Linuxoperatingsystem
3.1.Bootsequence
3.2.Rootfilesystem
3.3.Devicedrivers
4.Softwareinterfaces
4.1.SPIcommunicationprotocolsconsideration
4.2.Robotprogrammer’sAPI
4.3.Playerserversupport
5.Implementation,evaluationandinfrastructure
5.1.Performanceevaluationandlimitations
5.2.Swarmroboticsinfrastructure
6.Opensourcematerials
Acknowledgements
Vitae
$35.95
331
MissingdataanalysiswithfuzzyC-Means:
Astudyofitsapplicationinapsychologicalscenario
ExpertSystemswithApplications,Volume38,Issue6,June2011,Pages6793-6797
AlessandroG.DiNuovo
Inscientificresearch,andparticularlyinpsychologicalstudies,dataforsomevariablesinthedatabasetobeanalyzedmaywellbemissing.Ifnotdealtwithinthecorrectway,themissingvaluesmayweakenorevencompromisethevalidityofresearchintothedatabase,especiallyifitisasmallone.Inthispaperweintroducethemostcommonsolutionstothisproblemofferedbythemostpopularstatisticalsoftwareandatechniquebasedonthemostfamousfuzzyclusteringalgorithm:
FuzzyC-Means(FCM).Thenwecomparethesemethodologiesinordertohighlightthepeculiarcharacteristicsofeachsolution.Thecomparisonwasmadeinapsychologicalresearchenvironment,usingadatabaseofin-patientswhohaveadiagnosisofmentalretardation.Theresultsdemonstratethatcompletiontechniques,andinparticulartheonebasedonFCM,leadtoeffectivedataimputation,avoidingthedeletionofelementswithmissingdata,whichdiminishesthepoweroftheresearch.
2.Methodsformissingdataanalysis
3.MissingdataimputationwithFCM
4.Empiricalresults
4.1.Thedatabase
4.2.Accuracycomparisonofmissingdataimputationtechniques
4.3.FCM-OCSapplication:
apoweranalysis
5.Conclusion
$41.95
Researchhighlights
►Missingdatamustbehandledincorrectwayinordertodonotcomprimisethevalidityofresearch.►Completationtechniquescanleadtoeffectivedataimputationinordertopreservethepoweroftheresearchresults.►ComparisonresultsinapsychologicalscenariodemonstratethatextentionstoFuzzyC-Meansclusteringcanaccuratelycompletedatasetswithmissingvalues.
332
ParLeS:
Softwareforchemometricanalysisofspectroscopicdata
ChemometricsandIntelligentLaboratorySystems,Volume90,Issue1,15January2008,Pages72-83
RaphaelA.ViscarraRossel
Relatedrefer