自动控制原理闭环零点对二阶系统的暂态影响分析分析Word格式.docx
《自动控制原理闭环零点对二阶系统的暂态影响分析分析Word格式.docx》由会员分享,可在线阅读,更多相关《自动控制原理闭环零点对二阶系统的暂态影响分析分析Word格式.docx(17页珍藏版)》请在冰豆网上搜索。
由图可知:
二阶系统的开环传达函数为:
2
WK
s
n
ss
二阶系统的闭环传达函数为:
WB
ns
1.2二阶系统单位阶跃响应
1,可得该二阶系统的单位阶跃响应
当输入单位阶跃信号时
Xrs
ω2
为:
X
c
Xr(s)
WB(s)
ss2
2ξωs
求其拉氏反变换有
e
nt
(t
0)
Xc
t
sin
dt
①
此中阻尼振荡角频次:
n,阻尼角:
d
arctan
1.3二阶系统极点散布图
σ
图1.3-101时的极点散布图
1.4二阶系统动向特征
1.4.1上涨时间
tr(系统输出量第一次达到稳态值时所用的时间)
令①中tt
r
时Xct
ntr
得
dtr
在系统没有达到最后的稳固从前,为知足上式,使sin(dtr)0
tr
②
1.4.2峰值时间tm(系统输出量第一次达到最大值时所用的时间)
令①中dxct0则第一个峰值对应的时间
dt
tm
③
d1
1.4.3最大超调量%(发生在第一个周期的峰值时间处)
因为
Xcm
100%
且在单位阶跃输入下,稳固值Xc
%
所以得
④
%e
1.4.4调理时间ts(xc(t)与稳态值xc(
)之间的偏差达到同意范围而不再高出
的动向过程时间)
ts5%
3
(0
0.9)
ts2%
4
⑤
2拥有零点的二阶系统的动向剖析
2.1拥有零点的二阶系统构造图及传达函数
wn2(sz)
Xc(s)
z(s2
2ξwnswn2)
图2.1-1带零点的二阶系统构造图
拥有零点的二阶系统的闭环传达函数为:
Xc(s)
1)
wn2(s1)
wn(τs
τ
WB(s)
s2
1(s2
Xr(s)
2ξwns
wn
2ξwnswn2)
此中τ为时间常数。
令1=z,则上式可写为以下形式:
2)
⑥
Xr(s)
z(s2
2ξwnswn
由式⑥可得,该系统的闭环传达函数拥有零点s
z,将式⑥分解,
由
Xc1(s)
wn2Xr(s)
()
1s
Xc1(s)
Xcs
Xc
z
2.2拥有零点的二阶系统的单位阶跃响应
为求其阶跃响应,设Xr(s)1,取初始条件为零,则Xc1(s)和Xc(s)的拉氏
反变换为
xc1(t)
1[
s(s
wn2
]
2ξwns
wn)
xc(t)
1[sXc1(s)]
1[Xc1(s)]
xc1(t)
1dxc1(t)
⑦
zdt
求出⑦中两项而后相加即得输出量,经过运算得
ξwnt
lz
ζwn
xc(t)1
sin(
ξ2wntθ)
ξwncos(1ξ2wntθ)⑧
1ξ2
l
上述式子中的“l”为极点与零点间的距离,在复平面上画出其地点(假定零点在极点左边)
jw
-P1
φθσ
-ZZ
图2.2-1复平面上的零点与极点散布
由上图可知:
lzp1
(zξwn)
(wn
2zξwn
cosφ
1ξ)
sinφ
故式子⑧能够写成:
xc(t)
eξwnt
φθ
⑨
1ξwnt
式子中:
θarctan1ξ2
ξ
φarctanwn1
ξ2
zξwn
z2
2zξwn
令r
ξwn
,则上式中的l
能够写为
12
2rξ2
r2
r代表闭环传达函数的复数极点的实部与零点实部之比。
所以式子⑨能够写为:
22rξ2
eξwntsin(1ξ2wntθφ)(t
0)⑩
ξ1ξ2
由此计算获得了典型的拥有零点的二阶系统的单位阶跃响应的公式,即为公式⑩。
3拥有零点的二阶系统的动向性能指标
由公式⑩获得了拥有零点的二阶系统的单位阶跃响应的公式:
eξwntsin(1ξ2wntθφ)t0
5
3.1上涨时间tr
在动向过程中,系统的输出第一次达到稳态值的时间称为上涨时间
tr。
依据定义
在公式⑩中令t
tr时,xc(t)
1,得
eξwntsin(1
ξ2wnt
θφ)=0
但在t
时期,即没有达到最后稳固从前,
,所以使
>
上式为零的原由是sin(1
)
,所以议论
θφ
ξwntθφ
=0
ξwnt
)=0
所出现的状况。
由sin(1
ξ2wntθφ)=0得:
1ξ2wnt
θφ=π
πθφ
○11
1ξ2wn
3.2最大超调量%
最大超调量发生在第一周期中ttm时辰,即导数为0的时辰。
dxc(t)
ttm
tan(1
ξ2wntθφ)
所以
1ξ2wntθφarctan1ξ2
nπnπθ
即
1ξ2wntmφnπ
因为第一次达到最大值经过时间,所以n取值为
1,当n=1
时,
1ξ2wntm
φπ
m
○
πφ
12
6
XcmXc
100%且在单位阶跃输入下,稳固值Xc1
(
-)
%e100%
3.3调理时间ts
调理时间ts是xc(t)与稳态值xc()之间的偏差达到同意的范围而不再高出的
动向过程时间。
在动向过程中的偏差为
xxc()xc(t)
sin(1ξ2wntθφ)
当x0.05或0.02时采纳近似计算法获得:
eξwnt
0.05(或0.02)
1ξ2
由此求得调理时间为:
ts(5%)
,
0<
ξ<
0.9
ξwn
ts(2%)
3.4振荡次数μ
振荡次数是指在调理时间ts内,xc(t)颠簸的次数。
依据这必定义可得振荡次数为:
μtstf
此中tf
2π
为阻尼振荡的周期时间。
4闭环零点的不一样对二阶系统动向指标的影响
4.1对上涨时间tr的影响
上涨时间tr
7
由上式能够看出上涨时间tr遇到wn,ξ,φ,θ的影响,当wn,ξ,θ必定
的时候,上涨时间tr只与φ相关。
-p1
-zφ
θ
φ
φθ
-z
图2
零点实部小于极点实部
图3
零点实部等于极点实部
图4
零点实部大于极点实部
由图2,图3,图4能够看出跟着z值的减小,零点愈来愈凑近虚轴,
φ值渐渐
增大,由tr
πθφ可得tr渐渐减小。
4.2对最大超调量%影响
超调量
(-
由式
3.1-1,图3.1-2,
的值随φ的值增大而减小,联合图
子能够看出,t
图2,图3,图4获得结论:
z值渐渐减小,φ值渐渐增大,tm渐渐减小,超
调量渐渐增大。
4.3对换节时间ts的影响
调理时间
由上边的两个式子能够看出,拥有零点的二阶系统的调理时间只与
ξ和wn有
8
关,与z的大小没关。
4.4振荡次数μ
由上述公式能够看出,振荡次数μ只与与阻尼ξ和振荡角频次wn相关,所以
振荡次数不受零点的地点影响,即与零点的大小没关。
5闭环零点的不一样对二阶系统暂态响应的影响
拥有零点的二阶系统传达函数:
s22ξwnswn2
下边是在极点地点不一样(θ值不一样)的状况下跟着闭环零点不停向负无量挪动过程中对系统的暂停态响应的图形
当0.5,wn5,系统无零点的二阶系统的阶跃响应曲线图
9
当0.5,wn5,z2的二阶系统的阶跃响应曲线图
当0.5,wn5,z4的二阶系统的阶跃响应曲线图
10
当0.5,wn5,z10的二阶系统的阶跃响应曲线图
当1.25,wn2,系统无零点的二阶系统的阶跃响应曲线图
11
当1.25,wn2,z2的二阶系统的阶跃响应曲线图
当1.25,wn2,z4的二阶系统的阶跃响应曲线图
13
当1.25,wn2,z10的二阶系统的阶跃响应曲线图
14
6总结
经过上述剖析能够看出,有拥有零点的二阶系统的响应指标与无零点的系统有很大的差异。
无零点的上涨时间ts只与阻尼ξ和振荡角频次wn相关,而在拥有零点的二阶系统中,上涨时间还与零点的实部相关,反应到图像上,即零点离虚轴越近上涨
ξw
时间越小。
由rn可知,r值越大,振荡性就越强。
最大超调量σ%也与零点的地点相关,z值越小,φ值越大,影响tm的值变小。
调理时间ts(5%)只与阻尼ξ和振荡角频次wn相关,所以不受零点地点
的影响,相同,振荡次数也不受其影响。
参照文件:
【1】王建辉,顾树生.自动控制原理.[M].北京.清华大学第一版社.2007
【2】吴麒,自动控制原理.[M]北京:
清华大学第一版社.1990
【3】张元林,积分变换.[M]北京:
高等教育第一版社.2003
【4】高国燊,余文杰等.自动控制原理.[M].华南理工大学第一版社.2006
【5】胡寿松.自动控制原理.[M].科学第一版社.2007
15