统计学贾5课后练答案1114章Word文档下载推荐.docx

上传人:b****6 文档编号:17092758 上传时间:2022-11-28 格式:DOCX 页数:56 大小:365.66KB
下载 相关 举报
统计学贾5课后练答案1114章Word文档下载推荐.docx_第1页
第1页 / 共56页
统计学贾5课后练答案1114章Word文档下载推荐.docx_第2页
第2页 / 共56页
统计学贾5课后练答案1114章Word文档下载推荐.docx_第3页
第3页 / 共56页
统计学贾5课后练答案1114章Word文档下载推荐.docx_第4页
第4页 / 共56页
统计学贾5课后练答案1114章Word文档下载推荐.docx_第5页
第5页 / 共56页
点击查看更多>>
下载资源
资源描述

统计学贾5课后练答案1114章Word文档下载推荐.docx

《统计学贾5课后练答案1114章Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《统计学贾5课后练答案1114章Word文档下载推荐.docx(56页珍藏版)》请在冰豆网上搜索。

统计学贾5课后练答案1114章Word文档下载推荐.docx

0.949

8.509

a.因变量:

y运送时间(天)

回归系数的含义:

每公里增加0.004天。

 

11.6下面是7个地区2000年的人均国内生产总值(GDP)和人均消费水平的统计数据:

地区

人均GDP(元)

人均消费水平(元)

北京

辽宁

上海

江西

河南

贵州

陕西

22460

11226

34547

4851

5444

2662

4549

7326

4490

11546

2396

2208

1608

2035

(1)人均GDP作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。

(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。

(4)计算判定系数,并解释其意义。

(5)检验回归方程线性关系的显著性(a=0.05)。

(6)如果某地区的人均GDP为5000元,预测其人均消费水平。

(7)求人均GDP为5000元时,人均消费水平95%的置信区间和预测区间。

__

(2)相关系数:

人均GDP(元)

人均消费水平(元)

.998(**)

7

(3)回归方程:

734.693

139.540

5.265

0.003

0.309

0.008

0.998

36.492

人均GDP没增加1元,人均消费增加0.309元。

(4)

模型摘要

R

R方

调整的R方

估计的标准差

.998(a)

0.996

247.303

a.预测变量:

(常量),人均GDP(元)。

人均GDP对人均消费的影响达到99.6%。

(5)F检验:

ANOVA(b)

平方和

df

均方

F

回归

81,444,968.680

1,331.692

.000(a)

残差

305,795.034

5

61,159.007

合计

81,750,763.714

6

b.因变量:

回归系数的检验:

t检验

(6)

某地区的人均GDP为5000元,预测其人均消费水平为2278.10657元。

(7)

人均GDP为5000元时,人均消费水平95%的置信区间为[1990.74915,2565.46399],预测区间为[1580.46315,2975.74999]。

11.7

(1)散点图(略),二者之间为负的线性相关关系。

(2)估计的回归方程为:

回归系数

表示航班正点率每增加1%,顾客投诉次数平均下降4.7次。

(P-Value=0.001108<

),拒绝原假设,回归系数显著。

(次)。

(5)置信区间:

(37.660,70.619);

预测区间:

(7.572,100.707)。

11.8Excel输出的结果如下(解释与分析请读者自己完成)

MultipleR

0.7951

RSquare

0.6322

AdjustedRSquare

0.6117

标准误差

2.6858

观测值

20

方差分析

SS

MS

SignificanceF

回归分析

223.1403

30.9332

2.79889E-05

18

129.8452

7.2136

总计

19

352.9855

Coefficients

tStat

P-value

Lower95%

Upper95%

Intercept

49.3177

3.8050

12.9612

0.0000

41.3236

57.3117

XVariable1

0.2492

0.0448

5.5618

0.1551

0.3434

11.9某汽车生产商欲了解广告费用(x)对销售量(y)的影响,收集了过去12年的有关数据。

通过计算得到下面的有关结果:

方差分析表

变差来源

SignificanceF

1602708.6

399.1000065

2.17E—09

40158.07

4015.807

11

1642866.67

参数估计表

tStat

P—value

363.6891

62.45529

5.823191

0.000168

XVariable1

1.420211

0.071091

19.97749

(1)完成上面的方差分析表。

(2)汽车销售量的变差中有多少是由于广告费用的变动引起的?

(3)销售量与广告费用之间的相关系数是多少?

(4)写出估计的回归方程并解释回归系数的实际意义。

(5)检验线性关系的显著性(a=0.05)。

(2)R2=0.9756,汽车销售量的变差中有97.56%是由于广告费用的变动引起的。

(3)r=0.9877

(4)回归系数的意义:

广告费用每增加一个单位,汽车销量就增加1.42个单位。

(5)回归系数的t检验:

p=2.17E—09<α,回归系数不等于0,显著。

回归直线的F检验:

p=2.17E—09<α,回归直线显著。

11.10

(1)r=0.9682;

(3)略;

(5)

11.11从20的样本中得到的有关回归结果是:

SSR=60,SSE=40。

要检验x与y之间的线性关系是否显著,即检验假设:

(1)线性关系检验的统计量F值是多少?

(2)给定显著性水平a=0.05,Fa是多少?

(3)是拒绝原假设还是不拒绝原假设?

(4)假定x与y之间是负相关,计算相关系数r。

(5)检验x与y之间的线性关系是否显著?

(1)SSR的自由度为k=1;

SSE的自由度为n-k-1=18;

因此:

F=

=

=27

=4.41

(3)拒绝原假设,线性关系显著。

(4)r=

=0.7746,由于是负相关,因此r=-0.7746

(5)从F检验看线性关系显著。

11.12

(1)

11.13

11.14略

11.15随机抽取7家超市,得到其广告费支出和销售额数据如下:

超市

广告费支出(万元)

销售额(万元)

A

B

C

D

E

F

G

l

2

4

6

10

14

20

19

32

44

40

52

53

54

(1)用广告费支出作自变量x,销售额作因变量y,求出估计的回归方程。

(2)检验广告费支出与销售额之间的线性关系是否显著(a=0.05)。

(3)绘制关于x的残差图,你觉得关于误差项

的假定被满足了吗?

(4)你是选用这个模型,还是另寻找一个更好的模型?

29.399

4.807

6.116

0.002

广告费支出(万元)

1.547

0.463

0.831

3.339

0.021

(2)回归直线的F检验:

691.723

11.147

.021(a)

310.277

62.055

1,002.000

(常量),广告费支出(万元)。

显著。

回归系数的t检验:

(3)未标准化残差图:

标准化残差图:

学生氏标准化残差图:

看到残差不全相等。

(4)应考虑其他模型。

可考虑对数曲线模型:

y=b0+b1ln(x)=22.471+11.576ln(x)。

第12章多元线性回归分析

12.1略

12.2根据下面Excel输出的回归结果,说明模型中涉及多少个自变量、少个观察值?

写出回归方程,并根据F,se,R2及调整的

的值对模型进行讨论。

SUMMARYOUTPUT

回归统计

0.842407

0.709650

0.630463

109.429596

15

3

321946.8018

107315.6006

8.961759

0.002724

131723.1982

11974.84

14

453670

tStat

XVariable2

XVariable3

657.0534

5.710311

-0.416917

-3.471481

167.459539

1.791836

0.322193

1.442935

3.923655

3.186849

-1.293998

-2.405847

0.002378

0.008655

0.222174

0.034870

自变量3个,观察值15个。

回归方程:

=657.0534+5.710311X1-0.416917X2-3.471481X3

拟合优度:

判定系数R2=0.70965,调整的

=0.630463,说明三个自变量对因变量的影响的比例占到63%。

估计的标准误差

=109.429596,说明随即变动程度为109.429596

回归方程的检验:

F检验的P=0.002724,在显著性为5%的情况下,整个回归方程线性关系显著。

的t检验的P=0.008655,在显著性为5%的情况下,y与X1线性关系显著。

的t检验的P=0.222174,在显著性为5%的情况下,y与X2线性关系不显著。

的t检验的P=0.034870,在显著性为5%的情况下,y与X3线性关系显著。

因此,可以考虑采用逐步回归去除X2,从新构建线性回归模型。

12.3根据两个自变量得到的多元回归方程为

,并且已知n=10,SST=6724.125,SSR=6216.375,

=0.0567。

(1)在a=0.05的显著性水平下,

与y的线性关系是否显著?

(2)在a=0.05的显著性水平下,

是否显著?

(3)在a=0.05的显著性水平下,

(1)回归方程的显著性检验:

假设:

H0:

=0H1:

不全等于0

SSE=SST-SSR=6724.125-6216.375=507.75

=42.85

=4.74,F>

,认为线性关系显著。

(2)回归系数的显著性检验:

≠0

t=

=24.72

=2.36,

>

,认为y与x1线性关系显著。

(3)回归系数的显著性检验:

=83.6

,认为y与x2线性关系显著。

12.4一家电器销售公司的管理人员认为,每月的销售额是广告费用的函数,并想通过广告费用对月销售额作出估计。

下面是近8个月的销售额与广告费用数据:

月销售收入y(万元)

电视广告费用工:

x1(万元)

报纸广告费用x2(万元)

96

90

95

92

94

5.0

2.0

4.0

2.5

3.0

3.5

1.5

1.5

2.5

3.3

2.3

4.2

(1)用电视广告费用作自变量,月销售额作因变量,建立估计的回归方程。

(2)用电视广告费用和报纸广告费用作自变量,月销售额作因变量,建立估计的回归方程。

(3)上述

(1)和

(2)所建立的估计方程,电视广告费用的系数是否相同?

对其回归系数分别进行解释。

(4)根据问题

(2)所建立的估计方程,在销售收入的总变差中,被估计的回归方程所解释的比例是多少?

(5)根据问题

(2)所建立的估计方程,检验回归系数是否显著(a=0.05)。

(1)回归方程为:

(2)回归方程为:

(3)不相同,

(1)中表明电视广告费用增加1万元,月销售额增加1.6万元;

(2)中表明,在报纸广告费用不变的情况下,电视广告费用增加1万元,月销售额增加2.29万元。

(4)判定系数R2=0.919,调整的

=0.8866,比例为88.66%。

(5)回归系数的显著性检验:

下限95.0%

上限95.0%

83.23009

1.573869

52.88248

4.57E-08

79.18433

87.27585

电视广告费用工:

2.290184

0.304065

7.531899

0.000653

1.508561

3.071806

报纸广告费用x2(万元)

1.300989

0.320702

4.056697

0.009761

0.476599

2.125379

=7.53

=2.57,

=4.05

12.5某农场通过试验取得早稻收获量与春季降雨量和春季温度的数据如下:

收获量y(kg/hm2)

降雨量x1(mm)

温度x2(℃)

2250

3450

4500

6750

7200

7500

8250

25

33

45

105

110

115

120

8

13

16

17

要求:

(1)试确定早稻收获量对春季降雨量和春季温度的二元线性回归方程。

(2)解释回归系数的实际意义。

(3)根据你的判断,模型中是否存在多重共线性?

(2)在温度不变的情况下,降雨量每增加1mm,收获量增加22.386kg/hm2,在降雨量不变的情况下,降雨量每增加1度,收获量增加327.672kg/hm2。

的相关系数

=0.965,存在多重共线性。

12.6

12.7

12.8

12.9下面是随机抽取的15家大型商场销售的同类产品的有关数据(单位:

元)。

企业编号

销售价格y

购进价格x1

销售费用x2

3

5

7

8

9

11

12

l238

l266

l200

1193

1106

1303

1313

1144

1286

l084

l120

1156

1083

966

894

440

664

791

852

804

905

77l

511

505

85l

659

223

257

387

310

339

283

302

214

304

326

235

276

15

1263

1246

490

696

390

316

(1)计算y与x1、y与x2之间的相关系数,是否有证据表明销售价格与购进价格、销售价格与销售费用之间存在线性关系?

(2)根据上述结果,你认为用购进价格和销售费用来预测销售价格是否有用?

(3)用Excel进行回归,并检验模型的线性关系是否显著(a=0.05)。

(4)解释判定系数R2,所得结论与问题

(2)中是否一致?

(5)计算x1与x2之间的相关系数,所得结果意味着什么?

(6)模型中是否存在多重共线性?

你对模型有何建议?

(1)y与x1的相关系数=0.309,y与x2之间的相关系数=0.0012。

对相关性进行检验:

销售价格

购进价格

销售费用

0.001

0.263

0.997

-.853(**)

可以看到,两个相关系数的P值都比较的,总体上线性关系也不现状,因此没有明显的线性相关关系。

(2)意义不大。

0.593684

0.35246

0.244537

69.75121

2

31778.1539

15889.08

3.265842

0.073722

12

58382.7794

4865.232

90160.9333

Lower9

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1