A.a1B.a3C.a1D.a3
9、已知,则的最小值为 ()
A. B. C. D.
10、已知动点P(x、y)满足10=|3x+4y+2|,则动点P的轨迹是 ()
A.椭圆 B.双曲线C.抛物线 D.无法确定
11、已知P是椭圆上的一点,O是坐标原点,F是椭圆的左焦点且,则点P到该椭圆左准线的距离为()
A.6B.4C.3D.
高二数学期末考试卷(理科)答题卷
一、选择题(本大题共11小题,每小题3分,共33分)
题号
1
2
3
4
5
6
7
8
9
10
11
答案
二、填空题(本大题共4小题,每小题3分,共12分)
12、命题:
的否定是
13、若双曲线的左、右焦点是、,过的直线交左支于A、B两点,若|AB|=5,则△AF2B的周长是.
14、若,,则为邻边的平行四边形的面积为.
15、以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为正常数,,则动点P的轨迹为椭圆;
②双曲线与椭圆有相同的焦点;
③方程的两根可分别作为椭圆和双曲线的离心率;
④和定点及定直线的距离之比为的点的轨迹方程为.
其中真命题的序号为_________.
三、解答题(本大题共6小题,共55分)
16、(本题满分8分)已知命题p:
方程表示焦点在y轴上的椭圆,命题q:
双曲线的离心率,若只有一个为真,求实数的取值范围.
17、(本题满分8分)已知棱长为1的正方体ABCD-A1B1C1D1,试用向量法求平面A1BC1与平面ABCD所成的锐二面角的余弦值。
18、(本题满分8分)
(1)已知双曲线的一条渐近线方程是,焦距为,求此双曲线的标准方程;
(2)求以双曲线的焦点为顶点,顶点为焦点的椭圆标准方程。
19、(本题满分10分)如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求的长;
(2)求cos<>的值;
(3)求证:
A1B⊥C1M.
20、(本题满分10分)如图所示,在直角梯形ABCD中,|AD|=3,|AB|=4,|BC|=,曲线段DE上任一点到A、B两点的距离之和都相等.
(1)建立适当的直角坐标系,求曲线段DE的方程;
(2)过C能否作一条直线与曲线段DE相交,且所
得弦以C为中点,如果能,求该弦所在的直线
的方程;若不能,说明理由.
21、(本题满分11分)若直线l:
与抛物线交于A、B两点,O点是坐标原点。
(1)当m=-1,c=-2时,求证:
OA⊥OB;
(2)若OA⊥OB,求证:
直线l恒过定点;并求出这个定点坐标。
(3)当OA⊥OB时,试问△OAB的外接圆与抛物线的准线位置关系如何?
证明你的结论。
高二数学(理科)参考答案:
1、C2、C3、A4、C5、B6、B7、B8、D9、C10、A
11、D
12、13、1814、15、②③
16、p:
00故m的取值范围为
17、如图建立空间直角坐标系,=(-1,1,0),=(0,1,-1)
设、分别是平面A1BC1与平面ABCD的法向量,
z
y
x
D1
A1
D
B1
C1
C
B
A
由可解得=(1,1,1)
易知=(0,0,1),
所以,=
所以平面A1BC1与平面ABCD所成的锐二面角的余弦值为。
18、
(1)或;
(2).
19、如图,建立空间直角坐标系O—xyz.
(1)依题意得B(0,1,0)、N(1,0,1)
∴||=.
第19题图
(2)依题意得A1(1,0,2)、B(0,1,0)、C(0,0,0)、B1(0,1,2)
∴=(1,-1,2),=(0,1,2),·=3,||=,||=
∴cos<,>=.
(3)证明:
依题意,得C1(0,0,2)、M(,2),=(-1,1,-2),
=(,0).∴·=-+0=0,∴⊥,
∴A1B⊥C1M.
20、
(1)以直线AB为x轴,线段AB的中点为原点建立直角坐标系,
则A(-2,0),B(2,0),C(2,),D(-2,3).
依题意,曲线段DE是以A、B为焦点的椭圆的一部分.
∴所求方程为
(2)设这样的弦存在,其方程为:
得
设弦的端点为M(x1,y1),N(x2,y2),则由
∴弦MN所在直线方程为验证得知,
这时适合条件.
故这样的直线存在,其方程为
21、解:
设A(x1,y1)、B(x2,y2),由得
可知y1+y2=-2my1y2=2c∴x1+x2=2m2—2cx1x2=c2,
(1)当m=-1,c=-2时,x1x2+y1y2=0所以OA⊥OB.
(2)当OA⊥OB时,x1x2+y1y2=0于是c2+2c=0∴c=-2(c=0不合题意),此时,直线l:
过定点(2,0).
(3)由题意AB的中点D(就是△OAB外接圆圆心)到原点的距离就是外接圆的半径。
而(m2—c+)2-[(m2—c)2+m2]=由
(2)知c=-2
∴圆心到准线的距离大于半径,故△OAB的外接圆与抛物线的准线相离。