上海市徐汇区2016届中考数学二模试卷含答案解析.doc
《上海市徐汇区2016届中考数学二模试卷含答案解析.doc》由会员分享,可在线阅读,更多相关《上海市徐汇区2016届中考数学二模试卷含答案解析.doc(27页珍藏版)》请在冰豆网上搜索。
2016年上海市徐汇区中考数学二模试卷
一.选择题
1.不等式组的解集是( )
A.x<2 B.2<x≤3 C.x≥3 D.空集
2.实数n、m是连续整数,如果,那么m+n的值是( )
A.7 B.9 C.11 D.13
3.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是( )
A.24° B.30° C.32° D.36°
4.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是( )
A.中位数不相等,方差不相等 B.平均数相等,方差不相等
C.中位数不相等,平均数相等 D.平均数不相等,方差相等
5.从1、2、3、4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线y=x2上的概率是( )
A. B. C. D.
6.下列命题中假命题是( )
A.两边及第三边上的高对应相等的两个三角形全等
B.两边及第三边上的中线对应相等的两个三角形全等
C.两边及其中一边上的高对应相等的两个三角形全等
D.两边及其中一边上的中线对应相等的两个三角形全等
二.填空题
7.计算:
4a3b2÷2ab= .
8.计算:
2m(m﹣3)= .
9.方程﹣3=0的解是 .
10.如果将抛物线y=(x﹣2)2+1向左平移1个单位后经过点A(1,m),那么m的值是 .
11.点E是△ABC的重心,,,那么= (用、表示)
12.建筑公司修建一条400米长的道路,开工后每天比原计划多修10米,结果提前2天完成了任务.如果设建筑公司实际每天修x米,那么可得方程是 .
13.为了了解某区5500名初三学生的体重情况,随机抽测了400名学生的体重,统计结果列表如下:
体重(千克)
频数
频率
40﹣45
44
45﹣50
66
50﹣55
84
55﹣60
86
60﹣65
72
65﹣70
48
那么样本中体重在50﹣55范围内的频率是 .
14.如图,在平行四边形ABCD中,AC、BD相交于O,请添加一个条件 ,可
得平行四边形ABCD是矩形.
15.梯形ABCD中,AD∥BC,AD=2,BC=6,点E是边BC上的点,如果AE将梯形ABCD的面积平分,那么BE的长是 .
16.如果直线y=kx+b(k>0)是由正比例函数y=kx的图象向左平移1个单位得到,那么不等式kx+b>0的解集是 .
17.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为 米.
18.如图,在△ABC中,∠CAB=90°,AB=6,AC=4,CD是△ABC的中线,将△ABC沿直线CD翻折,点B′是点B的对应点,点E是线段CD上的点,如果∠CAE=∠BAB′,那么CE的长是 .
三.解答题
19.计算:
+π0﹣|cot30°﹣tan45°|+.
20.解方程组:
.
21.如图,抛物线y=+bx+2与y轴交于点C,与x轴交于点A(1,0)和点B(点B在点A右侧);
(1)求该抛物线的顶点D的坐标;
(2)求四边形CADB的面积.
22.如图①,三个直径为a的等圆⊙P、⊙Q、⊙O两两外切,切点分别是A、B、C.
(1)那么OA的长是 (用含a的代数式表示);
(2)探索:
现有若干个直径为a的圆圈分别按如图②所示的方案一和如图③所示的方案二的方式排放,那么这两种方案中n层圆圈的高度hn= ,h′n= (用含n、a的代数式表示);
(3)应用:
现有一种长方体集装箱,箱内长为6米,宽为2.5米,高为2.5米,用这种集装箱装运长为6米,底面直径(横截面的外圆直径)为0.1米的圆柱形铜管,你认为采用第
(2)题中的哪种方案在这种集装箱中装运铜管数多?
通过计算说明理由;参考数据:
≈1.41,≈1.73
23.如图,在△ABC中,AB=AC,点D在边AC上,AD=BD=DE,联结BE,∠ABC=∠DBE=72°;
(1)联结CE,求证:
CE=BE;
(2)分别延长CE、AB交于点F,求证:
四边形DBFE是菱形.
24.如图,直线y=mx+4与反比例函数y=(k>0)的图象交于点A、B,与x轴、y轴分别交于D、C,tan∠CDO=2,AC:
CD=1:
2.
(1)求反比例函数解析式;
(2)联结BO,求∠DBO的正切值;
(3)点M在直线x=﹣1上,点N在反比例函数图象上,如果以点A、B、M、N为顶点的四边形是平行四边形,求点N的坐标.
25.如图,线段PA=1,点D是线段PA延长线上的点,AD=a(a>1),点O是线段AP延长线上的点,OA2=OP•OD,以O为圆心,OA为半径作扇形OAB,∠BOA=90°.
点C是弧AB上的点,联结PC、DC.
(1)联结BD交弧AB于E,当a=2时,求BE的长;
(2)当以PC为半径的⊙P和以CD为半径的⊙C相切时,求a的值;
(3)当直线DC经过点B,且满足PC•OA=BC•OP时,求扇形OAB的半径长.
2016年上海市徐汇区中考数学二模试卷
参考答案与试题解析
一.选择题
1.不等式组的解集是( )
A.x<2 B.2<x≤3 C.x≥3 D.空集
【考点】解一元一次不等式组.
【分析】分别求出每一个不等式的解集,根据口诀:
同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【解答】解:
解不等式x﹣1>1,得:
x>2;
解不等式x+1≤4,得:
x≤3;
所以不等式组的解集为:
2<x≤3,
故选:
B.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
2.实数n、m是连续整数,如果,那么m+n的值是( )
A.7 B.9 C.11 D.13
【考点】估算无理数的大小.
【分析】根据题意结合5<<6即可得出m,n的值,进而求出答案.
【解答】解:
∵n、m是连续整数,如果,
∴n=5,m=6,
∴m+n=11.
故选:
C.
【点评】此题主要考查了估算无理数的大小,正确得出m,n的值是解题关键.
3.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是( )
A.24° B.30° C.32° D.36°
【考点】线段垂直平分线的性质.
【分析】由EF是BC的垂直平分线,得到BE=CE,根据等腰三角形的性质得到∠EBC=∠ECB,由BD是∠ABC的平分线,得到∠ABD=∠CBD,根据三角形的内角和即可得到结论.
【解答】解:
∵EF是BC的垂直平分线,
∴BE=CE,
∴∠EBC=∠ECB,
∵BD是∠ABC的平分线,
∴∠ABD=∠CBD,
∴∠ABD=∠DBC=∠ECB,
∵∠BAC=60°,∠ACE=24°,
∴∠ABD=∠DBC=∠ECB=(180°﹣60°﹣24°)=32°.
故选C.
【点评】本题主要考查线段垂直平分线的性质,角平分线的定义,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
4.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是( )
A.中位数不相等,方差不相等 B.平均数相等,方差不相等
C.中位数不相等,平均数相等 D.平均数不相等,方差相等
【考点】方差;算术平均数;中位数.
【分析】分别利用平均数以及方差和中位数的定义分析,进而求出答案.
【解答】解:
2、3、4的平均数为:
(2+3+4)=3,中位数是3,方差为:
[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;
3、4、5的平均数为:
(3+4+5)=4,中位数是4,方差为:
[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;
故中位数不相等,方差相等.
故选:
D.
【点评】此题主要考查了平均数以及方差和中位数的求法,正确把握相关定义是解题关键.
5.从1、2、3、4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线y=x2上的概率是( )
A. B. C. D.
【考点】概率公式;二次函数图象上点的坐标特征.
【分析】通过列表列出所有等可能结果,然后根据二次函数图象上点的坐标特征确定在函数图象上的点的情况数,再根据概率公式列式进行计算即可得解.
【解答】解:
列表如下:
1
2
3
4
1
(1,2)
(1,3)
(1,4)
2
(2,1)
(2,3)
(2,4)
3
(3,1)
(3,2)
(3,3)
4
(4,1)
(4,2)
(4,3)
从1、2、3、4四个整数中任取两个数作为一个点的坐标共有12种等可能结果,
其中点恰好在抛物线y=x2上的只有(1,4)这一个结果,
所以这个点恰好在抛物线y=x2上的概率是,
故选:
B.
【点评】本题主要考查概率的计算,熟知:
概率=所求情况数与总情况数之比以及二次函数图象上点的坐标特征是解题的根本.
6.下列命题中假命题是( )
A.两边及第三边上的高对应相等的两个三角形全等
B.两边及第三边上的中线对应相等的两个三角形全等
C.两边及其中一边上的高对应相等的两个三角形全等
D.两边及其中一边上的中线对应相等的两个三角形全等
【考点】命题与定理.
【分析】利用全等三角形的判定方法分别判断后即可确定正确的选项.
【解答】解:
A、有两边及第三边上的高对应相等,这两边的夹角有可能一个是锐角一个是钝角,所以这两个三角形不一定全等,故错误,为假命题;
B、两边及第三边上的中线对应相等的两个三角形全等,正确,为真命题;
C、两边及其中一边上的高对应相等的两个三角形全等,正确,为真命题;
D、两边及其中一边上的中线对应相等的两个三角形全等,正确,为真命题,
故选A.
【点评】本题考查了全等三角形的判定与旋转变换的性质,要求对三角形全等的判定准确掌握并灵活运用,希望同学们掌握.
二.填空题
7.计算:
4a3b2÷2ab= 2a2b .
【考点】整式的除法.
【分析】直接利用整式的除法运算法则求出答案.
【解答】解:
4a3b2÷2ab=2a2b.
故答案为:
2a2b.
【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.
8.计算:
2m(m﹣3)= 2m2﹣6m .
【考点】单项式乘多项式.
【分析】直接利用单项式乘以多项式运算法则直接求出答案.
【解答】解:
2m(m﹣3)=2m2﹣6m.
故答案为:
2m2﹣6m.
【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.
9.方程﹣3=0的解是 x=5 .
【考点】无理方程.
【专题】推理填空题.
【分析】根据解无理方程的方法解答即可解答本题.
【解答】解:
﹣3=0,
移项,得
,
两边平方,得
2x﹣1=9,
解得x=5,
检验:
当x=5时,,
故原无理方程的解是x=5.
故答案为:
x=5.
【点评】本题考查无理方程,解题的关键是明确解无理方程的方法,注意最后要进行检验.
10.如果将抛物线y=(x﹣2)2+1向左平移1个单位后经过点A(1,m),那么m的值是 1 .
【考点】二次函数图象与几何变换.
【分析】直接利用二次函数平移规律得出平移后解析式,再利用函数图象上点的坐标性质得出m的值.
【解答】解:
∵将抛物线y=(x﹣2)2+1向左