地表覆盖物处理对作物及土壤中氮磷含量的影响Word下载.docx

上传人:b****6 文档编号:16691799 上传时间:2022-11-25 格式:DOCX 页数:12 大小:49.62KB
下载 相关 举报
地表覆盖物处理对作物及土壤中氮磷含量的影响Word下载.docx_第1页
第1页 / 共12页
地表覆盖物处理对作物及土壤中氮磷含量的影响Word下载.docx_第2页
第2页 / 共12页
地表覆盖物处理对作物及土壤中氮磷含量的影响Word下载.docx_第3页
第3页 / 共12页
地表覆盖物处理对作物及土壤中氮磷含量的影响Word下载.docx_第4页
第4页 / 共12页
地表覆盖物处理对作物及土壤中氮磷含量的影响Word下载.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

地表覆盖物处理对作物及土壤中氮磷含量的影响Word下载.docx

《地表覆盖物处理对作物及土壤中氮磷含量的影响Word下载.docx》由会员分享,可在线阅读,更多相关《地表覆盖物处理对作物及土壤中氮磷含量的影响Word下载.docx(12页珍藏版)》请在冰豆网上搜索。

地表覆盖物处理对作物及土壤中氮磷含量的影响Word下载.docx

EffectsofmuchonNandPcontentsinsoilsandcrops

ABSTRACT

FieldexperimentswereconductedtoresearcheffectsofmulchonNandPcontentsinsoilsandcropswithdifferentcoveringtoimproveN,Putilizationrateandreducetheproductioncost.Theresultsshowedthat:

(1)Withstrawcovering,Ncontentsofstemandleaves,rootsandfruitsincauliflowerwere7.61%,5.74%and12.37%,Pcontents0.66%,0.71%and1.61%,respectively.Ncontentsofstemandleaves,rootsandfruitsinmaizewere3.50%,2.93,3.08%and0.93%,Pcontents1.14%,2.04%and0.41%,respectively.

(2)Withplasticfilmcovering,Ncontentsofstemandleaves,rootsandfruitsincauliflowerwere8.07%,3.31%and11.90%,Pcontents1.12%,0.50%and1.52%,respectively.Ncontentsofstemandleaves,rootsandfruitsinmaizewere0.84%,3.22%,1.12%and0.75%,Pcontents1.72%,2.09%,2.00%and0.38%,respectively.(3)Withnocovering,Ncontentsofstemandleaves,rootsandfruitsincauliflowerwere7.84%,3.87%and11.99%,Pcontents1.06%,0.62%and1.35%,respectively.Ncontentsofstemandleaves,rootsandfruitsinmaizewere1.12%,3.13%,2.98%and2.43%,Pcontents1.26%,2.12%,2.76%and0.26%,respectively.(4)Withstraw,plasticfilmandnocovering,Ncontentsinsoilsplantingcauliflowerwere1.68g/kg,1.73g/kgand1.61g/kg,andinsoilsplantingmaize1.69g/kg,1.75g/kg,1.60g/kginthefirststage,respectively.Withstraw,plasticfilmandnocovering,Ncontentsinsoilsplantingcauliflowerwere1.72g/kg,1.42g/kgand1.41g/kg,andinsoilsplantingmaize1.70g/kg,1.37g/kgand1.34g/kginthesecondstage,respectively.(5)Withstraw,plasticfilmandnocovering,Pcontentsinsoilsplantingcauliflowerwere1.36g/kg,1.11g/kgand1.26g/kg1.68g/kg,andinsoilsplantingmaize1.45g/kg,1.22g/kgand1.34g/kginthefirststage,respectively.Withstraw,plasticfilmandnocovering,Pcontentsinsoilsplantingcauliflowerwere1.49g/kg,1.40g/kgand1.72g/kg,andinsoilsplantingmaize1.55g/kg,1.51g/kgand1.68g/kginthesecondstage,respectively.

Keywords:

Vegetable;

Nitrogen;

P;

Strawcovering;

Plasticfilmcovering;

 

1引言

世界人口的不断快速递增,大大增加了人们对粮食的需求量。

近年来,随着城市现代化的发展,滇池流域人口的迅速增加,土地被征收,农田大面积减少,为了满足人们对粮食的大量需求,人们不得不加大对化肥、农药等生产资料的大量使用,传统的种植方式面临着许多问题。

其中氮磷是植物必需的元素:

氮肥是含有作物营养元素氮的化肥。

元素氮对作物生长起着非常重要的作用,它是植物体内氨基酸的组成部分、是构成蛋白质的成分,也是植物进行光合作用起决定作用的叶绿素的组成部分[1]。

施用氮肥不仅能提高农产品的产量,还能提高农产品的质量,是农业生产中不可缺少的营养物质,同时又是日益增长的环境污染因子[2]。

据相关调查结果,滇池流域每亩耕地的氮磷化肥用量纯养分约为200350kg/a,部分菜地纯养分用量达到600kg/a,而目前滇池流域坝平地的氮肥利用率约为15%-40%,氮肥的过量施用、不合理施用,造成氮肥的大量浪费,并流失到水体中,造成面源污染。

因此,通过实验总结出不同覆盖物对土壤及植株中氮磷含量影响规律从而达到对其改善及其控制,对改善农田种植有巨大贡献,有利于降低农业种植成本,提高土地利用率具有作用。

秸秆覆盖是一种古老的农耕保墒技术,短期秸秆覆盖通过调节地温和切断蒸发面与土壤毛管联系来抑制蒸发、增加降雨人渗,从而达到提墒保水的效果[3]。

我国早在2000多年前,西汉末年的《氾胜全书》中就有关于秸秆覆盖的记载,欧洲国家在三、四百年前也已经在农业上采取覆盖措施[3]。

20世纪初,欧美国家对秸秆覆盖进行了大量的研究,提供了理论上的依据[4]。

1933年,Duley和Russel使用残茬覆盖耕作法,使包括秸秆覆盖在内的残茬覆盖法几乎在美国、加拿大和前苏联都得到了大面积的试验和推广[5、6]。

我国秸秆覆盖一直都有应用,但大规模的进行学术探讨与交流始于1990年[7]。

据统计,1988年,我国秸秆覆盖面积超过6.67万hm2,1991年达到350多万hm2,到2001年,秸秆覆盖面积已超过600万hm2[8]。

很多研究表明,秸秆覆盖对土壤温度、水分、化学性状和作物的产量、品质都有重要影响[9-13]。

秸秆覆盖还可减少土壤侵蚀及板结、减少杂草、减少疾病、减少土壤中的盐分和农药污染、减少重金属的迁移和转化、促进植物生长、减少农药的使用等优点[14]。

本实验通过研究不同地表覆盖模式下的植株及土壤中N、P含量的变化,探明不同覆盖模式下作物及土壤中N、P变化,达到利用地表覆盖物来提高N、P利用率,降低生产成本。

2材料与方法

2.1试验区概况

试验地点位于云南省昆明市晋宁县上蒜乡段七村主公路东侧50m的台地上(东经120°

13′~52′,北纬24°

24′~28′)。

属低纬高原亚热带季风气候区,海拔1916m,年平均气温为14.8℃,年平均年降雨量900mm,干季(11-4月)的平均值为120mm,占全年降水量的13.3%,雨季(5-10月)的平均值780mm,占全年降水量的86.7%。

土壤为山地沙质红壤,土壤基本理化性质为:

有机质19.57g/kg,全氮1.39g/kg,碱解氮131.1mg/kg,全磷0.80g/kg,速效磷56.80mg/kg,总钾4.46g/kg,速效钾265.3mg/kg,pH值是6.62。

2.2试验方法

2.2.1种植模式

种植作物以青花和玉米为主,采取育苗移栽,在6月初种植;

7月下旬-8月上旬收获。

种植模式为裸地、青花无覆盖、青花地膜覆盖、青花秸秆覆盖、青花不盖膜、玉米不盖膜、玉米地膜覆盖、玉米秸秆覆盖。

每种种植模式处理设3个小区,共21个小区,各处理随机分布。

小区面积30m2。

2.2.2种植规格

(1)LD:

裸地小区整理后,不种植作物。

(2)DZ1:

玉米地膜覆盖玉米等行距,栽培密度3700株/亩,165株/小区。

规格:

80cm(行距)×

45cm(塘距)。

(3)DZ2:

青花地膜覆盖青花等行距,栽培密度2100株/亩,95株/小区。

40cm(株距)。

(4)DZ3:

玉米无覆盖玉米等行距,栽培密度3700株/亩,165株/小区。

(5)DZ4:

青花无覆盖青花等行距,栽培密度2100株/亩,95株/小区。

(6)FG1:

青花秸秆覆盖青花等行距,栽培密度2100株/亩,95株/小区。

40cm(株距)

(7)FG2:

玉米秸秆覆盖玉米等行距,栽培密度3700株/亩,165株/小区。

2.2.3施肥处理

所需肥料及其中所含营养元素:

氨基酸微量元素肥:

氮+磷+钾10%、镁+硼+锌2%、有机质30%、有基质中氨基酸含量25%;

磷酸一铵:

氮10%、磷50%;

尿素:

氮46.4%;

复合肥:

氮12%-磷8%-钾24%。

各处理施肥量相同,底肥:

100kg/亩。

追肥:

3次均用复合肥。

移栽7天后5kg/亩;

之后2次每隔20天分别追施10kg/亩。

2.3样品采集及分析方法

植株采样:

植株按照常规采样方法每个小区随机采5株回去后,用自来水冲洗干净,再用蒸馏水冲洗3遍,按根、茎、叶、果实将各器官分开晾干后在105℃下烘30min,杀青,再在65℃下烘干后粉碎,过0.5mm筛保存,待用。

植株全氮全磷的测定:

植株全氮采用H2SO4-H2O2混合消煮,半微量凯氏定氮法;

植株全磷采用H2SO4-H2O2混合消煮,钼黄比色法。

土壤采样:

在各小区中分别按3点法采取土样,每点取0.5kg组成混合样,按四分法取混合样1kg作为该点土壤样品,带回实验室分析。

土壤肥力的测定:

全氮含量采用凯氏法;

全磷含量采用钼锑抗比色法。

2.4数据统计方法

采用Excel2003处理数据,采用统计软件DPS6.55,并用Duncan新复极差法(n=3)分析不同覆盖物对作物各部分及土壤中氮、磷含量变化的差异性。

3.结果与分析

3.1覆盖处理对植株中N、P含量的影响

3.1.1覆盖处理对植株中N含量的影响

在秸秆覆盖情况下,青花茎叶、根部、果实含全氮量分别为7.61%、5.74%、12.37%。

地膜覆盖情况下,青花茎叶、根部、果实含全氮量分别为8.07%、3.31%;

、、11.90%。

无覆盖情况下,青花茎叶、根部、果实含全氮量分别为7.84%、3.87%、11.99%(图1)。

青花茎叶中全氮含量从大到小的顺序为:

地膜覆盖>无覆盖>秸秆覆盖;

青花根部全氮含量从大到小的顺序为:

秸秆覆盖>无覆盖>地膜覆盖;

青花果实全氮含量从大到小的顺序为:

秸秆覆盖>无覆盖>地膜覆盖。

其中,青花根部全氮含量在秸秆覆盖情况下相对较高呈差异显著,在青花茎叶与果实中全氮含量高低与覆盖与否、不同覆盖物的差异不显著,表明秸秆覆盖可以促进青花根部对氮的吸收,有利于青花生长。

图1不同覆盖模式下青花植株中全氮含量

Fig.1EffectofmulchonTNcontentsincauliflower

3.1.2覆盖处理对玉米中N含量的影响

在秸秆覆盖情况下,玉米茎、叶全氮含量分别为1.31%、3.50%;

根部全氮含量为3.08%;

果实全氮含量为0.93%。

地膜覆盖情况下,玉米茎、叶全氮含量分别为0.84%、3.22%;

根部全氮含量为1.12%;

果实全氮含量为0.75%。

未覆盖情况下,玉米茎、叶全氮含量分别为1.12%、3.13%;

根部全氮含量为1.98%;

果实全氮含量为0.84%(图2)。

玉米茎中全氮含量从大到小的顺序为:

秸秆覆盖>未覆盖>地膜覆盖;

玉米叶中全氮含量从大到小的顺序为:

秸秆覆盖>地膜覆盖>无覆盖;

玉米根部全氮含量从大到小的顺序为:

玉米果实全氮含量从大到小的顺序为:

其中,玉米根部全氮含量在秸秆覆盖情况下相对较高呈差异显著,表明秸秆覆盖可以促进玉米根部对氮的吸收,有利于青花生长。

图2不同覆盖模式对玉米中全氮含量的影响

Fig.2EffectofmulchonTNcontentsincorn

3.2覆盖处理对植株中P含量的影响

3.2.1覆盖处理对青花中P含量的影响

在秸秆覆盖情况下,青花茎叶、根部、果实全磷含量分别为0.66%、0.71%、1.61%。

地膜覆盖情况下,青花茎叶、根部、果实全磷含量分别为1.12%、0.50%、1.52%。

无覆盖情况下,青花茎叶茎叶、根部、果实全磷含量分别为1.06%、0.62%、1.35%(图3)。

青花茎叶中全磷含量从大到小的顺序为:

青花根部全磷含量从大到小的顺序为:

青花果实全磷含量从大到小的顺序为:

秸秆覆盖>地膜覆盖>无覆盖。

其中,青花根部全磷含量在秸秆覆盖情况下相对较高呈差异显著,在青花茎叶与果实中全磷含量高低与覆盖与否、不同覆盖物的差异不显著,表明秸秆覆盖可以促进青花根部对磷的吸收,有利于青花生长。

图3不同覆盖模式下青花植株中全磷含量

Fig.3EffectofmulchonTPcontentsincauliflower

3.2.2覆盖处理对玉米中P含量的影响

在秸秆覆盖情况下,玉米,茎、叶、根部、果实全磷含量分别为1.14%、2.04%、2.93%、0.41%。

地膜覆盖情况下,玉米茎、叶、根、果实全磷含量分别为1.72%、2.09%、2.00%、0.38%。

未覆盖情况下,玉米茎、叶、根部、果实全磷含量分别为1.26%、2.12%、2.76%、0.26%(图4)。

玉米茎中全磷含量从大到小的顺序为:

地膜覆盖>无未覆盖>秸秆覆盖;

玉米叶中全磷含量从大到小的顺序为:

未覆盖>地膜覆盖>秸秆覆盖;

玉米根部全磷含量从大到小的顺序为:

玉米果实全磷含量从大到小的顺序为:

其中,玉米根部全磷含量在秸秆覆盖情况下相对较高,在玉米茎、叶与果实中全磷含量高低与覆盖与否、不同覆盖物的差异不显著,表明秸秆覆盖可以促进玉米根部对磷的吸收,有利于玉米生长。

图4不同覆盖模式下玉米植株中全磷含量

Fig.4EffcetofmulchonTPcontentsincorn

3.3覆盖处理对土壤中N、P含量的影响

3.3.1覆盖处理对土壤中N含量的影响

在秸秆覆盖前期,玉米在秸秆覆盖、地膜覆盖、无覆盖情况下,土壤中全氮含量分别为1.69g/kg、1.75g/kg、1.60g/kg;

青花在秸秆覆盖、地膜覆盖、无覆盖情况下,土壤中全氮含量分别为1.68g/kg、1.73g/kg、1.61g/kg(图5)。

土壤中全氮含量最多的是地膜覆盖,秸秆覆盖次之,无覆盖最少。

这是因为只种植了作物而没有使用任何覆盖的小区在降雨过程中,雨水几乎没有缓冲的打击在土壤上,易使土壤中的全氮随水流失,致使土壤中全氮含量低;

而对于地膜覆盖,我们采用的是全膜覆盖,对雨水的击打起到了缓冲作用,径流几乎冲刷不到覆盖的地方,地膜对土壤起到了保护作用,加之有作物对土壤全氮的固定,使土壤中的全氮含量高。

玉米秸秆覆盖、地膜覆盖和无覆盖之间差异显著;

青花亦是,秸秆覆盖、地膜覆盖和无覆盖之间差异显著。

虽然秸秆覆盖土壤中全氮含量少于地膜覆盖,但是与无覆盖相比,秸秆覆盖的效果仍然更好。

图5不同覆盖模式下土壤中全氮含量(秸秆覆盖前20d)

Fig.5EffectofmulchonsoilTNcontents

在秸秆覆盖后期,玉米在秸秆覆盖、地膜覆盖、无覆盖情况下,土壤中全氮含量分别为1.70g/kg、1.37g/kg、1.34g/kg;

青花在秸秆覆盖、地膜覆盖、无覆盖情况下,土壤中全氮含量分别为1.72g/kg、1.42g/kg、1.41g/kg(图6)。

土壤中全氮含量最多的是秸秆覆盖,地膜覆盖次之,最少的是无覆盖。

玉米秸秆覆盖和地膜覆盖、无覆盖之间差异显著;

青花亦是,秸秆覆盖和地膜覆盖、无覆盖之间差异显著。

对比图5和图6,可以发现图5秸秆覆盖前期中,地膜覆盖土壤中全氮含量比秸秆覆盖的高,随着覆盖时间的推移,到了秸秆覆盖后期(图6),秸秆覆盖土壤中全氮含量高于地膜覆盖,这是因为随着覆盖时间的推移,秸秆腐解会释放出全氮并进入土壤,使土壤中的全氮含量增加,超过了地膜覆盖。

可见,秸秆覆盖效果好于地膜覆盖,不仅无污染而且还会增加土壤养分含量含量。

图6不同覆盖模式对土壤中全氮含量的影响(秸秆覆盖后40d)

Fig.6EffectofmulchonsoilTNcontents

3.3.2覆盖处理对土壤中全磷含量的影响

在秸秆覆盖前期,玉米在秸秆覆盖、地膜覆盖、无覆盖情况下,土壤中全磷含量分别为1.45g/kg、1.22g/kg、1.34g/kg;

青花在秸秆覆盖、地膜覆盖、无覆盖情况下,土壤中全氮含量分别为1.36g/kg、1.11g/kg、1.26g/kg(图7)。

土壤中全磷含量最多的是秸秆覆盖,无覆盖次之,地膜覆盖最少。

这是因为在相同施肥量的情况下,秸秆中含有一定的磷,在覆盖前期秸秆中的磷迅速释放,使得土壤中全磷含量升高;

而在地膜与无覆盖中,由于地膜具有增温作用,更有利于微生物生长,为植物提供了更多所需的磷,使得地膜覆盖土壤中的全磷减少,以致少于无覆盖中的。

玉米中秸秆覆盖与地膜覆盖之间差异显著;

青花也如此。

图7不同覆盖模式对土壤中全磷含量的影响(秸秆覆盖前20d)

Fig.7EffectofmulchonsoilTPcontents

在秸秆覆盖后期,玉米在秸秆覆盖、地膜覆盖、无覆盖情况下,土壤中全磷含量分别为1.55g/kg、1.51g/kg、1.68g/kg;

青花在秸秆覆盖、地膜覆盖、无覆盖情况下,土壤中全磷含量分别为1.49g/kg、1.40g/kg、1.72g/kg(图8)。

土壤中全磷含量最多的是无覆盖,秸秆覆盖次之,地膜覆盖最少。

这是因为在秸秆覆盖后期,秸秆中的磷由于在前期迅速释放,使得后期秸秆覆盖模式土壤中全磷含量与前期相比迅速降低,但也高于地膜覆盖模式的;

在青花、玉米中,无覆盖与地膜覆盖、秸秆覆盖之间差异显著。

图8不同覆盖模式对土壤中全磷含量的影响(秸秆覆盖后40d)

Fig.8EffectofmulchonsoilTPcontents

4讨论

由于化肥的大量施用,使土壤的肥力明显下降,秸秆覆盖可达到用养结合的目的,同时,秸秆覆盖在减少土壤表面蒸发和雨水对表土肥料淋失的过程中,间接保持了土壤肥力[15],这正是现代农业所欠缺的环节。

秸秆还田后可为土壤提供氮、磷、钾等营养成分。

秸秆覆盖在一定程度上削弱了土壤和近地层大气的乱流交换,并对太阳辐射和吸收转化热量,及热量传导均有影响,秸秆覆盖对太阳辐射的阻碍作用,可减少土壤热量向大气散失,因此,秸秆覆盖下土壤温度的年变化与日变化可起到低温增温、高温降温的效果,可增加微生物的活动,肥沃土壤,更利于作物生长[16,17]。

有研究表明,秸秆覆盖,可以提供土壤养分含量,且再烟株进入成熟期后土壤碱解氮含量呈平稳的下降趋势,这对优质烤烟的生产时十分有利的[18]。

研究表明,秸秆覆盖可提高土壤中速效磷、速效钾的含量[19]。

秸秆覆盖可以增加作物出苗率,提高作物产量,对速效氮及全氮的提高有缓慢影响,且在秸秆覆盖情的同时不改变氮肥的使用总量,作物生长前期可适当增大氮肥施用比例,有利于降低土壤碳氮比,促进秸秆腐解,防止微生物争氮带来的不利影响[20,21]。

秸秆覆盖与实地氮肥管理技术相结合,可减少氮肥用量40%,且使水稻产量有所提高[22]。

本研究表明,秸秆覆盖对作物根系氮磷含量影响差异显著,根系吸收土壤中的养分,是植物营养的主要来源,秸秆覆盖使作物根部氮磷含量增高,表明秸秆覆盖能够促进作物对养分的吸收,有利于作物生长发育。

此外,秸秆覆盖后青花的果实中氮

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 成人教育 > 专升本

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1