初中数学九大几何模型Word文档下载推荐.docx
《初中数学九大几何模型Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《初中数学九大几何模型Word文档下载推荐.docx(25页珍藏版)》请在冰豆网上搜索。
②延长AC交BD于点E,必有∠BEC=∠BOA;
③BD
OD
OB
tan∠OCD;
④BD⊥AC;
AC
OC
OA
⑤连接AD、BC,必有AD2
BC2
2
2;
⑥S△BCD
1AC
BD
ABCD
2A
三、模型三、对角互补模型
(1)全等型-90°
①∠AOB=∠DCE=90°
②OC平分∠AOB
OEB
①CD=CE;
②OD+OE=2OC;
③S△DCE
S△OCD
S△OCE
1OC2
证明提示:
M
①作垂直,如图2,证明△CDM≌△CEN
②过点C作CF⊥OC,如图3,证明△ODC≌△FEC
※当∠DCE的一边交AO的延长线于D时(如图
4):
N
以上三个结论:
①
CD=CE;
②OE-OD=
2OC;
1OC2A
③S△OCES△OCD
图3
FB
图4
(2)全等型-120°
①∠AOB=2∠DCE=120°
②OD+OE=OC;
③S
△DCE
S
3OC2
△OCD
△OCE
4
①可参考“全等型
-90°
”证法一;
②如右下图:
在
OB上取一点
F,使OF=OC,证明△OCF为等边三角形。
F
(3)全等型-任意角ɑ
①∠AOB=2ɑ,∠DCE=180-2ɑ;
②CD=CE;
①OC平分∠AOB;
②OD+OE=2OC·
cosɑ;
③S△DCES△OCDS△OCEOC2sinαcosα
※当∠DCE的一边交AO的延长线于D时(如右下图):
原结论变成:
①;
②;
③。
可参考上述第②种方法进行证明。
请思考初始条件的变化对模型的影响。
EB
对角互补模型总结:
①常见初始条件:
四边形对角互补,注意两点:
四点共圆有直角三角形斜边中线;
②初始条件“角平分线”与“两边相等”的区别;
A
③注意OC平分∠AOB时,C
∠CDE=∠CED=∠COA=∠COB如何引导?
四、模型四:
角含半角模型90°
(1)角含半角模型90°
---1
①正方形ABCD;
②∠EAF=45°
①EF=DF+BE;
②△CEF的周长为正方形ABCD周长的一半;
也可以这样:
②EF=DF+BE;
①∠EAF=45°
ADA
BECGBE
(2)角含半角模型90°
---2
①EF=DF-BE;
ADADA
CC
EBEBEB
FF
(3)角含半角模型90°
---3
①Rt△ABC;
②∠DAE=45°
BD2
CE2
DE2(如图
1)
若∠DAE旋转到△ABC外部时,结论BD2
DE2仍然成立(如图
2)
BDECBDFEC
AA
DBECDBEC
(4)角含半角模型90°
变形
H
△AHE为等腰直角三角形;
证明:
连接AC(方法不唯一)
G
∵∠DAC=∠EAF=45°
,
∴∠DAH=∠CAE,又∵∠ACB=∠ADB=45°
∴△DAH∽△CAE,∴
DAAC
AHAE
∴△AHE∽△ADC,∴△AHE为等腰直角三角形
模型五:
倍长中线类模型
(1)倍长中线类模型---1
①矩形ABCD;
②BD=BE;
③DF=EF;
AF⊥CF
ADAD
BCEHBEH
模型提取:
①有平行线AD∥BE;
②平行线间线段有中点DF=EF;
可以构造“8”字全等△ADF≌△HEF。
(2)倍长中线类模型---2
①平行四边形ABCD;
②BC=2AB;
③AM=DM;
④CE⊥AB;
∠EMD=3∠MEA
辅助线:
有平行AB∥CD,有中点AM=DM,延长EM,构造△AME≌△DMF,连接CM构造
等腰△EMC,等腰△MCF。
(通过构造8字全等线段数量及位置关系,角的大小转化)
AMDAMD
EE
BCBC
模型六:
相似三角形360°
旋转模型
(1)相似三角形(等腰直角)360°
旋转模型---倍长中线法【条件】:
①△ADE、△ABC均为等腰直角三角形;
②EF=CF;
①DF=BF;
②DF⊥BF
延长DF到点G,使FG=DF,连接CG、BG、BD,证明△BDG为等腰直角三角形;
突破点:
△ABD≌△CBG;
难点:
证明∠BAO=∠BCG
(2)相似三角形(等腰直角)360°
旋转模型---
补全法
②
EF=CF;
C
构造等腰直角△AEG、△AHC;
辅助线思路:
将DF与BF转化到CG与EF。
(3)任意相似直角三角形360°
旋转模型---补全法
①△OAB∽△ODC;
②∠OAB=∠ODC=90°
③BE=CE;
①AE=DE;
②∠AED=2∠ABO
延长BA到G,使AG=AB,延长CD到点H使DH=CD,补全△OGB、△OCH构造旋转模
型。
转化AE与DE到CG与BH,难点在转化∠AED。
OGO
ADA
ECBEC
(4)任意相似直角三角形360°
旋转模型---倍长法
延长DE至M,使ME=DE,将结论的两个条件转化为证明△AMD∽△ABO,此为难点,
将△AMD∽△ABC继续转化为证明△ABM∽△AOD,使用两边成比例且夹角相等,此处难点在
证明∠ABM=∠AOD
模型七:
最短路程模型
(1)最短路程模型一(将军饮马类)
总结:
右四图为常见的轴对称类最短路程问题,
最后都转化到:
“两点之间,线段最短:
解决;
特点:
①动点在直线上;
②起点,终点固定PA+PB
l
P
B'
A'
l1
Q
l2
PA+PQ+BQ
(2)最短路程模型二(点到直线类
②M为OB上一定点;
③P为OC上一动点;
④Q为OB上一动点;
【问题】:
求MP+PQ最小时,P、Q的位置?
将作
Q关于OC对称点Q’,转化PQ’=PQ,过点M作MH⊥OA,
则MP+PQ=MP+PQ’MH(垂线段最短)
Q'
P
MB
(3)最短路程模型二(点到直线类
A(0,4),B(-2,0),P(0,n
)
n为何值时,PB
5PA最小?
5
求解方法:
①x轴上取C(2,0),
使sin∠OAC=5
②过B作BD⊥AC,交y轴于点E,即为
所求;
③tan∠EBO=tan∠OAC=1,即E(0,1)
yy
x
(4)最短路程模型三(旋转类最值模型)
①线段OA=4,OB=2;
②OB绕点O在平面内360°
旋转;
AB的最大值,最小值分别为多少?
以点O为圆心,OB为半径作圆,如图所示,将问题转化为
“三角形两边之和大于第三边,两边之差小于第三边”
。
最大值:
OA+OB;
最小值:
OA-OB
最小值位置
最大值位置
②以点O为圆心,OB,OC为半径作圆;
③点P是两圆所组成圆环内部(含边界)一点;
若PA的最大值为10,则OC=6
若PA的最小值为
1,则OC=3
若PA的最小值为2,则PC的取值范围是
0<
PC<
AO
①Rt△OBC,∠OBC=30°
②OC=2;
③OA=1;
④点P为BC上动点(可与端点重合);
⑤△OBC绕点O旋转
PA最大值为OA+OB=1
23;
PA的最小值为1OBOA31
如下图,圆的最小半径为
O到BC垂线段长。
模型八:
二倍角模型
在△ABC中,∠B=2∠C;
以BC的垂直平分线为对称轴,作点A的对称点A’,连接AA’、BA’、CA’、
则BA=AA’=CA’(注意这个结论)
此种辅助线作法是二倍角三角形常见的辅助线作法之一,不是唯一作法。
模型九:
相似三角形模型
(1)相似三角形模型--基本型D
平行类:
DE∥BC;
A字型
结论:
ADAEDE(注意对应边要对应)
ABACBC
(2)相似三角形模型---斜交型
如右图,∠AED=∠ACB=90°
E
AE×
AB=AC×
ADB
如右图,∠ACE=∠ABC;
AC=AE×
AB
EDA
EDE
CBCBC
8字型A字型
斜交型
斜交型CB双垂型
22
第四个图还存在射影定理:
EC=BC×
AC;
BC=BE×
BA;
CE=AE×
BE;
(3)相似三角形模型---一线三等角型
(1)图:
∠ABC=∠ACE=∠CDE=90°
(2)图:
∠ABC=∠ACE=∠CDE=60°
(3)图:
∠ABC=∠ACE=∠CDE=45°
①△ABC∽△CDE;
②AB×
DE=BC×
CD;
图
(1)
一线三等角模型也经常用来建立方程或函数关系。
BCDBCD图(3)
图
(2)
(4)相似三角形模型---圆幂定理型
PA为圆的切线;
PA×
PB=PC×
PD;
(2)图:
PA=PC×
PB;
(3)图:
以上结论均可以通过相似三角形进行证明。
图
(1)
图
(2)
图(3)
清代“红顶商人”胡雪岩说:
“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;
看得到天下,就能做天下的生意;
看得到外国,就能做外国的生意。
”可见,一个人的心胸和眼光,决
定了他志向的短浅或高远;
一个人的希望和梦想,决定了他的人生暗淡或辉煌。
人生能有几回搏,有生不搏待何时!
所有的机遇和成功,都在充满阳光,充满希望的大道之上!
我们走过了黑夜,就迎来了黎明;
走过了荆棘,就迎来了花丛;
走过了坎坷,就走出了泥
泞;
走过了失败,就走向了成功!
一个人只要心存希望,坚强坚韧,坚持不懈,勇往直前地去追寻,去探索,去拼搏,他总有一天会成功。
正如郑板桥所具有的人格和精神:
“咬定青山不放松,立根原在破岩中。
千磨万
击还坚劲,任尔东南西北风。
”
梦想在,希望在,人就有奔头;
愿奋斗,勇拼搏,事就能成功。
前行途中,无论我们面对怎样的生活,无论我们遭遇怎样的挫折,只要坚定执着地走在充满希望的路上,就能将逆境变为
顺境,将梦想变为现实。
实现人生的梦想,我们必须希望和拼搏同在,机遇和奋斗并存,要一如既往,永远走在充满希望的路上!