人教版六年级上册数学广角Word文件下载.docx
《人教版六年级上册数学广角Word文件下载.docx》由会员分享,可在线阅读,更多相关《人教版六年级上册数学广角Word文件下载.docx(7页珍藏版)》请在冰豆网上搜索。
2、有谁知道这类题我们把它叫做什么问题吗?
(鸡兔同笼)板书。
鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年,
3、会做“鸡兔同笼”这类题吗?
会做的我们今天进一步来学习,不会的也没关系,通过这节课的学习你老师相信今后你一定会做了。
那同学们有没有信心把这节课的内容学好呢?
二、展示情境,尝试探究
(一)出示情景,获取信息
1.“鸡兔同笼”这四个字什么意思呀?
(鸡和兔关在同一个笼子里)
为了研究方便,我们把题目里的数字改小一点。
“笼子里有若干只鸡和兔,从上面数,有8个头;
从下面数,有26条腿。
”(说明:
为了便于分析时叙述,把“26只脚”改成了“26条腿”课件出示)
2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?
学生理解:
①鸡和兔共8只。
②鸡和兔共有26条腿。
③鸡有2条腿。
④兔有4条腿。
(课件出示)
(二)猜想验证,
1、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?
学生猜测,在猜测时要抓住哪个条件呢?
(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?
学生猜测,老师板书
2、怎样才能确定同学们猜的对不对?
(把鸡的腿和兔的腿加起来看等不等于26。
)
3、和学生一起验证,找出正确的答案。
(只有这一个正确答案吗?
4、我们把这种方法叫做列举法。
(板书:
列表法)
5、你们觉得用猜想列表法解决鸡兔同笼问题怎么样?
(生:
麻烦,而且当头和脚的只数越多时,越不容易找出答案。
6、那我们还有研究新方法的必要。
(三)尝试假设法
1、、为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?
(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?
(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?
(就会少算两条腿)(课件出示:
把一只兔当成一只鸡算,就少了两条腿。
2、假设全是鸡一共就有16条腿。
实际有26条腿,这样笼子里就少了10条腿,为什么会少了10条腿呢?
(把兔当了鸡在算。
一只兔当成一只鸡算少两条腿,那把几只兔当成了鸡算就会少算10条腿呢?
即10里面有几个2。
就把几兔当成了鸡算,5个2,用五只兔当成了鸡算,这个五就表示应该有5只兔)
3、上面的过程能用算式表示出来吗?
请同学们试试看。
(学生试着列算式,请一个学生到黑板上去板演。
4、假设全是鸡:
(板书)
8×
2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)
26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)
4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。
所以4-2表示是一只兔当成一只鸡就要少算2条腿。
10÷
2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?
就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷
2=5就是兔的只数。
)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)
5、算出来后,我们还要检验算的对不对,谁愿意口头检验。
生:
3×
2+5×
4=26(只),5+3=8(只)。
师:
看来做对了,最后写上答语。
6、假设全是兔
7、、我们再回到表格中,看看右起第一列中的8和0是什么意思?
(笼子里全是兔)那是不是全都是兔呢?
(不是)也就是假设笼子里全是兔。
那把兔当了鸡在算。
那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?
(就会多算两条腿)(课件出示:
把一只鸡当成一只兔算,就多了两条腿)
8、先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?
同学们能自己解决吗?
如果有困难可以同桌边或小组讨论。
(学生讨论写算式,然后指名板演。
4=32(条)(如果把鸡全看成兔一共就有8*4=32条腿)
32-26=6(条)(把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,6条腿是多算了鸡的腿)
4-2=2(假设全是兔,是把两条腿的鸡当成有4条腿的兔。
所以4-2表示是一只鸡当成一只兔多算了2条腿。
6÷
2=3(只)鸡(那要把多少只鸡当成兔来算就会多算6条腿呢?
就看6里面有几个2就是把几只鸡当成了兔算,所以6÷
2=3就是现在鸡的只数。
)
8-3=5(只)兔
小结:
刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。
这是解答鸡兔同笼问题的一种基本方法。
假设法)
(四)列方程解
在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?
(方程的方法)
要用列方程的方法就必须找到等量关系式。
通过得到到信息能写出哪些等量关系式呢?
(兔的只数+鸡的只数=8;
兔的腿+鸡的腿=26条腿)(课件出示)
这里我们需要求兔的只数和鸡的只数,共有两个未知数。
那我们可以设一个未知数为X,再把另一个表示出来。
这道题我们可以设兔的知数为X只,根据兔和鸡共有8只。
那鸡的只数就可以表示成:
(8-X)只),因为一只鸡有2条腿,所以X只鸡就共有2X条腿。
一只兔有4只脚,(8-X)只兔就有4(8-X)只脚。
又因为鸡和兔共有26只脚,所以2X+4(8-X)=26
①
解:
设鸡有X只,兔有(8-X)只。
2X+4(8-X)=26
在解的时候可以根据等式的性质将减变成加,分别加上4X,再来解。
②
设有兔X只,鸡有(8-X)只。
4X+2(8-X)=26
同样抽生说出自己想法。
那种方程好解一点,(设兔的只数为X好解点)所以我们可以设脚数多的兔为X,在解的时候容易一点。
列方程的重点是找出等量关系:
设头数,以脚数相等来列出方程;
请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?
(列表法,假设法和列方程)
三、练习
1、现在我们就用刚才学到的这些方法来解决《孙子算经》中原题,你会做吗?
用你喜欢的一种方法做
课件出示《孙子算经》中原题学生解答并集体讲评
四、延伸、应用
1.课件出示“做一做1”
鸡兔同笼问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?
课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。
2.看来鸡兔问题这类问题我们不只局限算鸡和兔的只数问题上,只要能用“鸡兔同笼”问题来解答的问题都可以统一叫做“鸡兔同笼”问题。
下面我们就用刚才学到的“鸡兔同笼”方法,来帮我们解决生活中遇到的一些实际问题。
3、课件出示“做一做”第二题。
问这道题与“鸡兔同笼”问题有相似的地方吗?
有哪些地方相似?
(大船相当于“兔”,小船相当于“鸡”)学生独立完成,集体讲评。
五、课后总结:
本节课你有什么收获?
那你知道早在一千五百年前的古人又是怎么解决鸡兔同笼问题的?
请同学们自学P114页下面内容。
这个内容我们留到下节课进行讲解。
《鸡兔同笼》说课稿
一、说教材
(一)教材分析
“鸡兔同笼”是人教版数学课标实验教材六年级上册数学广角内容。
数学广角是本套实验教材新增的特色板块。
教材利用数学广角系统而有步骤地渗透数学思想方法,使学生形成探索数学问题的兴趣与欲望,逐步发展数学思维能力。
本册教材的数学广角单元,安排了我国民间广为流传的数学问题“鸡兔同笼”,通过教学,一方面使学生了解古人解决此类问题的巧妙思路,激发学生对数学的学习兴趣;
另一方面,通过对此题多种解题方法的探索和对比,使学生体会到解决策略的多样性和用代数方法解题的优越性,促进学生逻辑推理能力的发展,“鸡兔同笼”问题在五年级上册学习稍复杂的方程作为课后练习出现过,而在初一数学下册学习方程组时,“鸡兔同笼”又作为阅读材料出现,由此可见这一历史名题在数学中的地位。
(二)教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”的问题,并使学生体会代数方法的一般性。
3、在解决问题的过程中培养学生的逻辑推理能力,发展抽象思维。
(三)教学重、难点
尝试用不同的方法解决鸡兔同笼问题,并使学生体会代数方法的一般性。
难点:
理解假设法
二、说学情
六年级学生具备了一定的数学学习能力,能从问题中抽象出数及简单数量关系。
在解决问题过程中能进行简单的有条理的思考。
但鸡兔同笼问题对学生来说,离学生日常生活较远,非常抽象。
学生单从文字上很难理解并解决问题。
而形象直观的农远资源,变抽象为具体,为学生的探究活动铺路搭桥,成为学生学习数学和解决问题的强有力辅助工具。
帮助学生形象的理解题意,理解假设法。
由于“鸡兔同笼”问题在五年级上册学习稍复杂的方程作为课后练习出现过,所以学生具备了列方程解决这一问题的基础,通过分析、整理数量关系,能列出方程。
三、说教法与学法
《数学课程标准》指出:
“学生的学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
动手实践、自主探索与合作交流是学生学习数学的重要方式。
”所以,我把学法定为:
自主探索、合作交流、学生扮演。
对照学法制定教法,在教学中我借助丰富的农远资源,主要采用探究发现法、讨论交流法和活动教学法,以问题引领学生进行尝试、探究、交流。
鸡兔同笼教学反思
本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。
因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。
让学生获得亲自参与探究学习的积极体验。
按照我对教材的理解,并遵照《新课程标准》中:
在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流的精神。
首先以观察鸡兔的图片入手,让同学们发现动物身上隐藏着许多的数学问题,然后开门见山的引出本节课要研究的主题“鸡兔同笼”问题;
然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点;
接着引出《孙子算经》中的一个数据比较大的鸡兔同笼问题,先让学生用自己刚刚学到的方法进行解决,然后再激发学生“了解古人的解题方法”欲望,让学生自主的去阅读书中的一段阅读资料,了解古人的解题方法,并试着解释。
老师再利用多媒体课件帮助学生理解古人这种独到的解题方法--------抬腿法。
从而让学生受到古文化的熏陶,感受道古人的了不起。
最后就是利用法学到的方法解决生活中类似的“鸡兔同笼”问题,让学生真正感受到数学与生活密不可分,数学知识来源与生活,同样也运用于生活。
“鸡兔同笼”在以前是属于奥赛典型题,如今编入新课程教材第十一册中。
对学生尤其是基础不好的学生来说有一定的难度,因此,我认为必须让学生经历从多种角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的经验,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略;
并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法,并灵活运用该方法解决生活中的类似“鸡兔同笼”问题。
特别是用假设法解答,学生理解起来很难,为此我用画图的方法来帮助学生理解,先画8个圆圈代表8只鸡,每只鸡画2只脚,这样就有16只脚,缺了10只脚,再把其中的几只鸡每只添上2只脚就变成了兔子,所以有5只兔子。
这样把抽象的知识直观化了,学生很快理解了这种方法。
我注重从以下几个方面进行数学文化的渗透:
一、介绍中国古代的数学成就。
中国有着历史悠久、成就辉煌的数学文化,出现了许多伟大的数学家和经典的数学名著。
结合本节课的教学内容,教师通过向学生介绍记载“鸡兔同笼”问题的数学名著《孙子算经》,介绍古人解决鸡兔同笼问题的巧妙方法,使学生了解数学知识丰富的历史渊源,感受古人的聪明智慧,增强民族的自豪感。
二、渗透解决问题的思想方法。
数学思想方法是数学文化的精髓,教师有意识地向学生渗透一些基本的数学思想方法,可以加深学生对数学知识的理解,提高学生的思维品质。
结合本节课的数学内容,教师适当渗透了化繁为简、猜测验证、假设、数形结合等思想方法,其目的不仅是让学生掌握好本节课的基础知识和基本技能,更重要的让学生了解一些解决问题的策略,提高解决问题的能力。
三、注重数学模型的实际应用。
在数学教学中,从学生已有的生活经验出发,让学生亲身经历讲实际问题抽象成数学模型并进行解释与应用的过程,能激发学生的兴趣,让他们全身心地投入学习。
结合本节课的教学内容,教师安排了大量与“鸡兔同笼”有着类似数量关系的问题,让学生会用数学的思维方式去观察、分析周围世界,并且在这现实的、有意义的,富有挑战性的探索活动中,加深对数学知识的理解与掌握,感受到数学的真谛与价值。