spss进行判别分析步骤Word文档下载推荐.docx
《spss进行判别分析步骤Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《spss进行判别分析步骤Word文档下载推荐.docx(6页珍藏版)》请在冰豆网上搜索。
图1-2DefineRange对话框
在Minimum框中输入该分类变量的最小值在Maximum框中输入该分类变量的最大值。
按Continue
按钮返回主对话框。
(2)指定判别分析的自变量
图1-3展开Selection
Variable对话框的主对话框
在主对话框的左面的变量表中选择表明观测量特征的变量,按下面一个箭头按钮。
把选中的变量移到Independents矩形框中,作为参与判别分析的变量。
(3)选择观测量
图1-4SetValue
子对话框
如果希望使用一部分观测量进行判别函数的推导而且有一个变量的某个值可以作为这些观测量的标识,
则用Select功能进行选择,操作方法是单击Select按钮展开SelectionVariable。
选择框如图1-3
所示。
并从变量列表框中选择变量移入该框中再单击SelectionVariable选择框右侧的Value按钮,
展开SetValue(子对话框)对话框,如图1-4所示,键入标识参与分析的观测量所具有的该变量值,
一般均使用数据文件中的所有合法观测量此步骤可以省略。
(4)选择分析方法
在主对话框中自变量矩形框下面有两个选择项,被选中的方法前面的圆圈中加有黑点。
这两个选择项是用于选择判别分析方法的
lEnter
independenttogether
选项,当认为所有自变量都能对观测量特性提供丰富的信息时,使用该选择项。
选择该项将不加选择地使用所有自变量进行判别分析,建立全模型,不需要进一步进行选择。
lUse
stepwisemethod
选项,当不认为所有自变量都能对观测量特性提供丰富的信息时,使用该选择项。
因此需要判别贡献的大小,再进行选择当鼠标单击该项时Method
按钮加亮,可以进一步选择判别分析方法。
2.Method对话框如图
1-5所示:
图1-5StepwiseMethod
对话框
单击“Method”按钮展开StepwiseMethod对话框。
(1)Method栏选择进行逐步判别分析的方法
可供选择的判别分析方法有:
lWilks'
lambda选项,每步都是Wilk的概计量最小的进入判别函数
lUnexplainedvariance
选项,每步都是使各类不可解释的方差和最小的变量进入判别函数。
lMahalanobis’distance
选项,每步都使靠得最近的两类间的Mahalanobis距离最大的变量进入判别函数
lSmallestFratio选项,每步都使任何两类间的最小的F
值最大的变量进入判刑函数
lRao’sV选项,每步都会使RaoV
统计量产生最大增量的变量进入判别函数。
可以对一个要加入到模型中的变量的V
值指定一个最小增量。
选择此种方法后,应该在该项下面的V-to-enter
后的矩形框中输入这个增量的指定值。
当某变量导致的V值增量大于指定值的变量后进入判别函数。
(2)Criteria栏选择逐步判别停止的判据
可供选择的判据有:
lUseFvalue
选项,使用F值,是系统默认的判据当加人一个变量(或剔除一个变量)后,对在判别函数中的变量进行方差分析。
当计算的F值大于指定的Entry
值时,该变量保留在函数中。
默认值是Entry为3.84:
当该变量使计算的F值小于指定的Removal
值时,该变量从函数中剔除。
默认值是Removal为2.71。
即当被加入的变量F值为3.84
时才把该变量加入到模型中,否则变量不能进入模型;
或者,当要从模型中移出的变量F值&
lt;
2.71时,该变量才被移出模型,否则模型中的变量不会被移出.设置这两个值时应该注意Entry值〉Removal
值。
lUseProbabilityof
F选项,用F检验的概率决定变量是否加入函数或被剔除而不是用F值。
加入变量的F值概率的默认值是0.05(5%);
移出变量的F
值概率是0.10(10%)。
Removal值(移出变量的F值概率)&
gt;
Entry值(加入变量的F值概率)。
(3)Display栏显示选择的内容
对于逐步选择变量的过程和最后结果的显示可以通过Display栏中的两项进行选择:
lSummaryofsteps
复选项,要求在逐步选择变量过程中的每一步之后显示每个变量的统计量。
lFforPairwisedistances
复选项,要求显示两两类之间的两两F值矩阵。
3.Statistics对话框指定输出的统计量如图1-6
所示:
图1-6Statistics对话框
可以选择的输出统计量分为以下3类:
(l)描述统计量
在Descriptives栏中选择对原始数据的描述统计量的输出:
lMeans复选项,可以输出各类中各自变量的均值MEAN、标准差stdDev
和各自变量总样本的均值和标准差。
lUnivariateANOV
复选项,对各类中同一自变量均值都相等的假设进行检验,输出单变量的方差分析结果。
lBox’sM
复选项,对各类的协方差矩阵相等的假设进行检验。
如果样本足够大,表明差异不显著的p值表明矩阵差异不明显。
(2)Functioncoefficients栏:
选择判别函数系数的输出形式
lFisherh’s
复选项,可以直接用于对新样本进行判别分类的费雪系数。
对每一类给出一组系数。
并给出该组中判别分数最大的观测量。
lUnstandardized复选项,未经标准化处理的判别系数。
(3)Matrices栏:
选择自变量的系数矩阵
lWithin-groupscorrelation
matrix复选项,即类内相关矩阵,
它是根据在计算相关矩阵之前将各组(类)协方差矩阵平均后计算类内相关矩阵。
lWithin-groupscovariance
matrix复选项,即计算并显示合并类内协方差矩阵,
是将各组(类)协方差矩阵平均后计算的。
区别于总协方差阵。
lSeparate-groupscovariance
matrices复选项,对每类输出显示一个协方差矩阵。
lTotalcovariance
matrix复选项,计算并显示总样本的协方差矩阵。
4.Classification
对话框指定分类参数和判别结果如图1-7所示
图1-7Classification对话框
5.Save对话框,指定生成并保存在数据文件中的新变量。
如图1-8
所示:
图1-8Save对话框
6.选择好各选择项之后,点击“OK”按钮,提交运行Discriminant过程。