开关电源原理文档格式.docx

上传人:b****5 文档编号:16341393 上传时间:2022-11-23 格式:DOCX 页数:12 大小:159.46KB
下载 相关 举报
开关电源原理文档格式.docx_第1页
第1页 / 共12页
开关电源原理文档格式.docx_第2页
第2页 / 共12页
开关电源原理文档格式.docx_第3页
第3页 / 共12页
开关电源原理文档格式.docx_第4页
第4页 / 共12页
开关电源原理文档格式.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

开关电源原理文档格式.docx

《开关电源原理文档格式.docx》由会员分享,可在线阅读,更多相关《开关电源原理文档格式.docx(12页珍藏版)》请在冰豆网上搜索。

开关电源原理文档格式.docx

3、逆变:

将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。

4、输出整流与滤波:

根据负载需要,提供稳定可靠的直流电源。

二、控制电路:

一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。

三、检测电路:

除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。

四、辅助电源:

提供所有单一电路的不同要求电源。

开关控制稳压原理

开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;

当开关K断开时,输入电源E便中断了能量的提供。

可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。

图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。

电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。

在AB间的电压平均值EAB可用下式表示:

EAB=TON/T*E

式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。

由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。

改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(TimeRatioControl,缩写为TRC)。

按TRC控制原理,有三种方式:

一、脉冲宽度调制(PulseWidthModulation,缩写为PWM):

开关周期恒定,通过改变脉冲宽度来改变占空比的方式。

二、脉冲频率调制(PulseFrequencyModulation,缩写为PFM):

导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。

三、混合调制:

导通脉冲宽度和开关工作频率均不固定,都能改变的方式,它是以上二种方式的混合。

开关电源原理

(二)

开关电源自20世纪70年代开始应用以来,涌现出许多功能完备的集成控制电路,使开关电源电路日益简化,工作频率不断提高,效率大大提高,并为电源小型化提供了广阔的前景。

三端离线式脉宽调制单片开关集成电路TOP(Threeterminaloffline)将PWM控制器与功率开关MOSFET合二为一封装在一起,已成为开关电源IC发展的主流。

采用TOP开关集成电路设计开关电源,可使电路大为简化,体积进一步缩小,成本也明显降低。

2TOP开关结构及工作原理

2.1结构

  TOP开关集各种控制功能、保护功能及耐压700V的功率开关MOSFET于一体,采用TO220或8脚DIP封装。

少数采用8脚封装的TOP开关,除D、C两引脚外,其余6脚实际连在一起,作为S端,故仍系三端器件。

三个引出端分别是漏极端D、源极端S和控制端C。

其中,D是内装MOSFET的漏极,也是内部电流的检测点,起动操作时,漏极端由一个内部电流源提供内部偏置电流。

控制端C控制输出占空比,是误差放大器和反馈电流的输入端。

在正常操作时,内部的旁路调整端提供内部偏置电流,且能在输入异常时,自动锁定保护。

源极端S是MOSFET的源极,同时是TOP开关及开关电源初级电路的公共接地点及基准点。

2.2工作原理

  TOP包括10部分,其中Zc为控制端的动态阻抗,RE是误差电压检测电阻。

RA与CA构成截止频率为7kHz的低通滤波器。

主要特点是:

  

(1)前沿消隐设计,延迟了次级整流二级管反向恢复产生的尖峰电流冲击;

  

(2)自动重起动功能,以典型值为5%的自动重起动占空比接通和关断;

  (3)低电磁干扰性(EMI),TOP系列器件采用了与外壳的源极相连,使金属底座及散热器的dv/dt=0,从而降低了电压型控制方式与逐周期峰值电流限制;

  (4)电压型控制方式与逐周期峰值电流限制。

  下面简要叙述一下:

  

(1)控制电压源

  控制电压Uc能向并联调整器和门驱动极提供偏置电压,而控制端电流Ic则能调节占空比。

控制端的总电容用Ct表示,由它决定自动重起动的定时,同时控制环路的补偿,Uc有两种工作模式,一种是滞后调节,用于起动和过载两种情况,具有延迟控制作用;

另一种是并联调节,用于分离误差信号与控制电路的高压电流源。

刚起动电路时由D-C极之间的高压电流源提供控制端电流Ic,以便给控制电路供电并对Ct充电。

  

(2)带隙基准电压源

  带隙基准电压源除向内部提供各种基准电压之外,还产生一个具有温度补偿并可调整的电流源,以保证精确设定振荡器频率和门极驱动电流。

 (3)振荡器

  内部振荡电容是在设定的上、下阈值UH、UL之间周期性地线性充放电,以产生脉宽调制器所需要的锯齿波(SAW),与此同时还产生最大占空比信号(Dmax)和时钟信号(CLOCK)。

为减小电磁干扰,提高电源效率,振荡频率(即开关频率)设计为100kHz,脉冲波形的占空比设定为D。

 (4)放大器

  误差放大器的增益由控制端的动态阻抗Zc来设定。

Zc的变化范围是10Ω~20Ω,典型值为15Ω。

误差放大器将反馈电压UF与5.7V基准电压进行比较后,输出误差电流Ir,在RE上形成误差电压UR。

 (5)脉宽调制器(PWM)

  脉宽调制器是一个电压反馈式控制电路,它具有两层含义。

第一、改变控制端电流Ic的大小,即可调节占空比D,实现脉宽调制。

第二、误差电压UR经由RA、CA组成截止频率为7kHz的低通滤波器,滤掉开关噪声电压之后,加至PWM比较器的同相输入端,再与锯齿波电压UJ进行比较,产生脉宽调制信号UB。

  (6)门驱动级和输出级

  门驱动级(F)用于驱动功率开关管(MOSFET),使之按一定速率导通,从而将共模电磁干扰减至最小。

漏源导通电阻与产品型号和芯片结温有关。

MOSFET管的漏源击穿电压U(bo)ds≥700V。

  (7)过流保护电路

  过流比较器的反相输入端接阈值电压ULIMIT,同相输入端接MOSFET管的漏极。

此外,芯片还具有初始输入电流限制功能。

刚通电时可将整流后的直流限制在0.6A或0.75A。

  (8)过热保护电路

  当芯片结温TJ>

135℃时,过热保护电路就输出高电平,将触发器Ⅱ置位,Q=1,,关断输出级。

此时进入滞后调节模式,Uc端波形也变成幅度为4.7V~5.7V的锯齿波。

若要重新起动电路,需断电后再接通电源开关;

或者将控制端电压降至3.3V以下,达到Uc(reset)值,再利用上电复位电路将触发器Ⅱ置零,使MOSFET恢复正常工作。

  (9)关断/自起动电路

 一旦调节失控,关断/自动重起动电路立即使芯片在5%占空比下工作,同时切断从外部流入C端的电流,Uc再次进入滞后调节模式。

倘若故障己排除,Uc又回到并联调节模式,自动重新起动电源恢复正常工作。

自动重起动的频率为1.2Hz。

  (10)高压电流源

  在起动或滞后调节模式下,高压电流源经过电子开关S1给内部电路提供偏置,并且对Ct进行充电。

电源正常工作时S1改接内部电源,将高压电流源关断。

  当TOP开关起动操作时,在控制端环路振荡电路的控制下,漏极端有电流流入芯片,提供开环输入。

该输入通过旁路调整器、误差放大器时,由控制端进行闭环调整,改变Ir,经由PWM控制MOSFET的输出占空比,最后达到动态平衡。

3TOP开关的典型应用

3.112V/30W小功率开关电源

  12V/30W小功率开关电源原理图如图2所示。

该电源特性是:

简单,直接可与220V交流电源连接,经桥式整流电容滤波后产生300V直流高电压起动开关电源工作。

并且重量轻、体积小,接线简单外围元件少。

  该电路特点是利用三极管Q1,二极管D8及电阻R5、R6组成过低压保护电路,当输入电压降低到一定程度时,Q1导通,控制端C电位降低,TOP开关关闭,开关电源没有输出。

 

(1)输入电路

  电网交流220V输入电压经桥式整流、电容滤波后产生300V直流高压起动开关电源工作。

  

(2)电源变换器部分

  在该电路中,T2为高频变压器,其中

  N1为初级绕组(35T)

  N2为反馈绕组(15T)

  N3为次级隔离输出绕组(7T)

  开关电源工作后,反馈绕组N2经整流、滤波、限流后送至TOP开关控制极C,以调整TOP开关内部PWM占空比。

当因某种原因如负载变轻引起输出电压升高时,N2电压将升高,即流入TOP开关控制端C的电流增加。

在振荡电路的控制下,漏极端D有电流流入芯片,提供开环输入,该输入通过旁路调整器、误差放大器,由控制端进行闭环调整,经由PWM控制MOSFET的输出占空比,使其占空比线性减小,从而使输出电压下降,最后达到动态平衡,保持输出稳定。

电路中并接于初级绕组N1两端的瞬态电压抑制二极管D5、电容C4及快速二极管D6组成钳位削峰电路。

钳制电感放电脉冲的最高电位,减少漏感抗引起的漏极端电压畸变。

在实际绕制高频电源变压器时,为了减小漏感的影响,可采用初级与次级相互交叉的绕制方法。

同时,采用自我屏蔽作用较为良好的罐形磁芯,将线圈都用磁芯封在里边。

 (3)反馈控制回路

  电容C6决定软起动恢复时间,C6、R5、R4、C5、D7决定控制回路的零点。

R4阻值过小,限流线性差,容易导致TOP开关损坏;

过大则调整线性差。

在实验中取值为10kΩ

 (4)输出回路

  N3、D10、C8、D11构成输出回路。

肖特基势垒整流二极管D10对高频变压器次级的高频方波电压进行整流,经低ESR值的电解电容滤波及双向瞬态电压抑制二极管D11削峰稳压后,提供给负载电路。

R7既可改善电源本身的输出阻抗,又能小幅度地调整输出电压的范围,同时又可在电源空载时为电容C8提供放电回路。

R7取值为430Ω。

    

3.212.5V/25W精密开关电源

  12.5V/25W精密开关电源原理图如图3所示。

由TOP204构成隔离式+12.5V、2A(25W)开关电源电路,该电源的特性为:

当交流输入电压U从85V变化到265V时,电压调整率为±

0.2%;

当负载电流从10%(0.2A)变化到100%(2A)时,负载调整率也达±

0.2%,可与线性集成稳压电源相媲美。

该电路的主要特点是利用一片TL431(IC3)与光电耦合器(IC2)构成外部误差放大器。

它再与片内误差放大器配合使用,对控制电流进行精细调整,从而大大提高了稳压性能。

4结语

  由于TOP芯片内部完全集成了SMPS的全部功能,所以利用它设计出的开关电源周期短,成本低,对于小功率电源,简单,体积小,重量轻。

随着TOP开关系列的不断发展与改进,其在开关电源及其它应用领域中必将有着更加灿烂的前景。

开关式稳压电源的工作原理

随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。

传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40%-50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。

为了提高效率,人们研制出了开关式稳压电源,它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。

正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。

一、开关式稳压电源的基本工作原理

开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。

因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。

直流平均电压U。

可由公式计算,即Uo=Um×

T1/T

式中Um—矩形脉冲最大电压值;

—矩形脉冲周期;

T1—矩形脉冲宽度。

从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。

这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路

1、基本电路

图二开关电原基本电路框图

开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。

这部分电路目前已集成化,制成了各种开关电源用集成电路。

控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。

2.单端反激式开关电源

单端反激式开关电源的典型电路如图三所示。

电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。

所谓的反激,是指当开关管VT1导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。

当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。

唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。

单端反激式开关电源使用的开关管VT1承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。

3.单端正激式开关电源

单端正激式开关电源的典型电路如图四所示。

这种电路在形式上与单端反激式电路相似,但工作情形不同。

当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;

当开关管VT1截止时,电感L通过续流二极管VD3继续向负载释放能量。

在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。

为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。

由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200W的功率。

电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。

4.自激式开关稳压电源

自激式开关稳压电源的典型电路如图五所示。

这是一种利用间歇振荡电路组成的开关电源,也是目前广泛使用的基本电源之一。

当接入电源后在R1给开关管VT1提供启动电流,使VT1开始导通,其集电极电流Ic在L1中线性增长,在L2中感应出使VT1基极为正,发射极为负的正反馈电压,使VT1很快饱和。

与此同时,感应电压给C1充电,随着C1充电电压的增高,VT1基极电位逐渐变低,致使VT1退出饱和区,Ic开始减小,在L2中感应出使VT1基极为负、发射极为正的电压,使VT1迅速截止,这时二极管VD1导通,高频变压器T初级绕组中的储能释放给负载。

在VT1截止时,L2中没有感应电压,直流供电输人电压又经R1给C1反向充电,逐渐提高VT1基极电位,使其重新导通,再次翻转达到饱和状态,电路就这样重复振荡下去。

这里就像单端反激式开关电源那样,由变压器T的次级绕组向负载输出所需要的电压。

自激式开关电源中的开关管起着开关及振荡的双重作从,也省去了控制电路。

电路中由于负载位于变压器的次级且工作在反激状态,具有输人和输出相互隔离的优点。

这种电路不仅适用于大功率电源,亦适用于小功率电源*

5.推挽式开关电源

推挽式开关电源的典型电路如图六所示。

它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。

电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。

这种电路的优点是两个开关管容易驱动,主要缺点是开关管的耐压要达到两倍电路峰值电压。

电路的输出功率较大,一般在100-500W范围内。

6.降压式开关电源

降压式开关电源的典型电路如图七所示。

当开关管VT1导通时,二极管VD1截止,输人的整流电压经VT1和L向C充电,这一电流使电感L中的储能增加。

当开关管VT1截止时,电感L感应出左负右正的电压,经负载RL和续流二极管VD1释放电感L中存储的能量,维持输出直流电压不变。

电路输出直流电压的高低由加在VT1基极上的脉冲宽度确定。

这种电路使用元件少,它同下面介绍的另外两种电路一样,只需要利用电感、电容和二极管即可实现。

7.升压式开关电源

升压式开关电源的稳压电路如图八所示。

当开关管VT1导通时,电感L储存能量。

当开关管VT1截止时,电感L感应出左负右正的电压,该电压叠加在输人电压上,经二极管VD1向负载供电,使输出电压大于输人电压,形成升压式开关电源。

8.反转式开关电源

反转式开关电源的典型电路如图九所示。

这种电路又称为升降压式开关电源。

无论开关管VT1之前的脉动直流电压高于或低于输出端的稳定电压,电路均能正常工作。

当开关管VT1导通时,电感L储存能量,二极管VD1截止,负载RL靠电容C上次的充电电荷供电。

当开关管VT1截止时,电感L中的电流继续流通,并感应出上负下正的电压,经二极管VD1向负载供电,同时给电容C充电。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 成人教育 > 自考

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1