高中生物选修3 答案与提示Word文件下载.docx

上传人:b****5 文档编号:16334228 上传时间:2022-11-23 格式:DOCX 页数:48 大小:277.73KB
下载 相关 举报
高中生物选修3 答案与提示Word文件下载.docx_第1页
第1页 / 共48页
高中生物选修3 答案与提示Word文件下载.docx_第2页
第2页 / 共48页
高中生物选修3 答案与提示Word文件下载.docx_第3页
第3页 / 共48页
高中生物选修3 答案与提示Word文件下载.docx_第4页
第4页 / 共48页
高中生物选修3 答案与提示Word文件下载.docx_第5页
第5页 / 共48页
点击查看更多>>
下载资源
资源描述

高中生物选修3 答案与提示Word文件下载.docx

《高中生物选修3 答案与提示Word文件下载.docx》由会员分享,可在线阅读,更多相关《高中生物选修3 答案与提示Word文件下载.docx(48页珍藏版)》请在冰豆网上搜索。

高中生物选修3 答案与提示Word文件下载.docx

(4)载体DNA必需是安全的,不会对受体细胞有害,或不能进入到除受体细胞外的其他生物细胞中去。

(5)载体DNA分子大小应适合,以便提取和在体外进行操作,太大就不便操作。

实际上自然存在的质粒DNA分子并不完全具备上述条件,都要进行人工改造后才能用于基因工程操作。

4.网上查询:

DNA连接酶有连接单链DNA的本领吗?

迄今为止,所发现的DNA连接酶都不具有连接单链DNA的能力,至于原因,现在还不清楚,也许将来会发现可以连接单链DNA的酶。

(二)寻根问底

1.根据你所掌握的知识,你能分析出限制酶存在于原核生物中的作用是什么吗?

原核生物容易受到自然界外源DNA的入侵,但是,生物在长期的进化过程中形成了一套完善的防御机制,以防止外来病原物的侵害。

限制酶就是细菌的一种防御性工具,当外源DNA侵入时,会利用限制酶将外源DNA切割掉,以保证自身的安全。

所以,限制酶在原核生物中主要起到切割外源DNA、使之失效,从而达到保护自身的目的。

2.DNA连接酶与DNA聚合酶是一回事吗?

答:

不是一回事。

基因工程中所用的连接酶有两种:

一种是从大肠杆菌中分离得到的,称之为E·

coli连接酶。

另一种是从T4噬菌体中分离得到,称为T4连接酶。

这两种连接酶催化反应基本相同,都是连接双链DNA的缺口(nick),而不能连接单链DNA。

DNA连接酶和DNA聚合酶都是形成磷酸二酯键(在相邻核苷酸的3位碳原子上的羟基与5位碳原子上所连磷酸基团的羟基之间形成),那么,二者的差别主要表现在什么地方呢?

(1)DNA聚合酶只能将单个核苷酸加到已有的核酸片段的3′末端的羟基上,形成磷酸二酯键;

而DNA连接酶是在两个DNA片段之间形成磷酸二酯键,不是在单个核苷酸与DNA片段之间形成磷酸二酯键。

(2)DNA聚合酶是以一条DNA链为模板,将单个核苷酸通过磷酸二酯键形成一条与模板链互补的DNA链;

而DNA连接酶是将DNA双链上的两个缺口同时连接起来。

因此DNA连接酶不需要模板。

此外,二者虽然都是由蛋白质构成的酶,但组成和性质各不相同。

(三)模拟制作讨论题

1.你模拟插入的DNA片段能称得上一个基因吗?

不能。

因为一般基因有上千个碱基对。

2.如果你操作失误,碱基不能配对。

可能是什么原因造成的?

可能是剪切位点或连接位点选得不对(也可能是其他原因)。

(四)旁栏思考题

想一想,具备什么条件才能充当“分子运输车”?

能自我复制、有一个或多个切割位点、有标记基因位点及对受体细胞无害等。

四、知识拓展

1.限制酶所识别的序列有什么特点?

限制酶所识别的序列,无论是6个碱基还是4个碱基,

都可以找到一条中心轴线(图1-1),中轴线两侧的双链

DNA上的碱基是反向对称重复排列的。

图1-1限制酶识别序列的中心轴线

2.限制酶在DNA的任何部位都能将DNA切开吗?

任何一种限制酶都只识别和切断特定的核苷酸序列,这是由限制酶的性质所决定的。

3.DNA连接酶连接的是什么部位?

DNA连接酶是将一段DNA片段3′端的羟基与另一DNA片段5′端磷酸基团上的羟基连接起来形成酯键,而不是连接互补碱基之间的氢键。

1.2基因工程的基本操作程序

1.简述基因工程原理及基本操作程序。

2.尝试设计某一转基因生物的研制过程。

二、学习重点和难点

1.学习重点:

基因工程基本操作程序的四个步骤。

2.学习难点:

(1)从基因文库中获取目的基因。

(2)利用PCR技术扩增目的基因。

三、答案和提示

1.作为基因工程表达载体,只需含有目的基因就可以完成任务吗?

不可以。

因为目的基因在表达载体中得到表达并发挥作用,还需要有其他控制元件,如启动子、终止子和标记基因等。

必须构建上述元件的主要理由是:

(1)生物之间进行基因交流,只有使用受体生物自身基因的启动子才能比较有利于基因的表达;

(2)通过cDNA文库获得的目的基因没有启动子,只将编码序列导入受体生物中无法转录;

(3)目的基因是否导入受体生物中需要有筛选标记;

(4)为了增强目的基因的表达水平,往往还要增加一些其他调控元件,如增强子等;

(5)有时需要确定目的基因表达的产物存在于细胞的什么部位,往往要加上可以标识存在部位的基因(或做成目的基因与标识基因的融合基因),如绿色荧光蛋白基因等。

2.根据农杆菌可将目的基因导入双子叶植物的机理,你能分析出农杆菌不能将目的基因导入单子叶植物的原因吗?

若想将一个抗病基因导入单子叶植物,如小麦,从理论上说,你应该如何做?

农杆菌可分为根瘤农杆菌和发根农杆菌,在植物基因工程中以根瘤农杆菌的Ti质粒介导的遗传转化最多。

根瘤农杆菌广泛存在于双子叶植物中。

据不完全统计,约有93属643种双子叶植物对根瘤农杆菌敏感。

裸子植物对该菌也敏感。

当这些植物被该菌侵染后会诱发肿瘤。

近年来,也有报道该菌对单子叶植物也有侵染能力。

根瘤农杆菌侵染植物是一个非常复杂的过程。

根瘤农杆菌具有趋化性,即植物的受伤组织会产生一些糖类和酚类物质吸引根瘤农杆菌向受伤组织集中。

研究证明,主要酚类诱导物为乙酰丁香酮和羧基乙酰丁香酮,这些物质主要在双子叶植物细胞壁中合成,通常不存在于单子叶植物中,这也是单子叶植物不易被根瘤农杆菌侵染的原因。

近年来还发现一些中性糖,如L-阿拉伯糖、D-木糖等也有诱导作用。

酚类物质和糖类物质既可以作为根瘤农杆菌的趋化物,又可以作为农杆菌中Ti质粒上Vir区(毒性区)基因的诱导物,使Vir区基因活化,导致T-DNA的加工和转移,从而侵染植物细胞。

需要注意的是农杆菌中不同的菌株,侵染能力有差别,在基因工程中需要加以选择使用。

利用农杆菌侵染单子叶植物进行遗传转化时,是需要加上述酚类物质的,同时单子叶植物种类不同,农杆菌侵染进行遗传转化的效果也有很大差异。

如果想将一个抗病毒基因转入小麦,也可以用农杆菌,但要注意两点:

①要选择合适的农杆菌菌株,因为不是所有的农杆菌菌株都可以侵染单子叶植物;

②要加趋化和诱导的物质,一般为乙酰丁香酮等,目的是使农杆菌向植物组织的受伤部位靠拢(趋化性)和激活农杆菌的Vir区(诱导)的基因,使T-DNA转移并插入到染色体DNA上。

3.利用大肠杆菌可以生产出人的胰岛素,联系前面有关细胞器功能的知识,结合基因工程操作程序的基本思路,思考一下,若要生产人的糖蛋白,可以用大肠杆菌吗?

有些蛋白质肽链上有共价结合的糖链,这些糖链是在内质网和高尔基复合体上加工完成的,内质网和高尔基复合体存在于真核细胞中,大肠杆菌不存在这两种细胞器,因此,在大肠杆菌中生产这种糖蛋白是不可能的。

4.β-珠蛋白是动物血红蛋白的重要组成成分。

当它的成分异常时,动物有可能患某种疾病,如镰刀形细胞贫血症。

假如让你用基因工程的方法,使大肠杆菌生产出鼠的β-珠蛋白,想一想,应如何进行设计?

基本操作如下:

(1)从小鼠中克隆出β-珠蛋白基因的编码序列(cDNA)。

(2)将cDNA前接上在大肠杆菌中可以适用的启动子,另外加上抗四环素的基因,构建成一个表达载体。

(3)将表达载体导入无四环素抗性的大肠杆菌中,然后在含有四环素的培养基上培养大肠杆菌。

如果表达载体未进入大肠杆菌中,大肠杆菌会因不含有抗四环素基因而死掉;

如果培养基上长出大肠杆菌菌落,则表明β-珠蛋白基因已进入其中。

(4)培养进入了β-珠蛋白基因的大肠杆菌,收集菌体,破碎后从中提取β-珠蛋白。

(二)求异思维

你能推测出由mRNA反转录形成cDNA的过程大致分为哪些步骤吗?

1970年,特明(H.M.Temin)和巴尔的摩(D.Baltimore)证实了RNA病毒中含有一种能将RNA转录成DNA的酶,这种酶被称为依赖RNA的DNA聚合酶,由于与中心法则中的从DNA到RNA的转录是反向的,所以称为反转录酶(reversetranscriptase)。

反转录酶既可以利用DNA又可以利用RNA作为模板合成与之互补的DNA链。

像其他DNA聚合酶一样,反转录酶也以5′→3′方向合成DNA(图1-3)。

图1-3由mRNA反转录形成cDNA的过程

cDNA合成过程是:

第一步,反转录酶以RNA为模板合成一条与RNA互补的DNA单链,形成RNA-DNA杂交分子。

第二步,核酸酶H使RNA-DNA杂交分子中的RNA链降解,使之变成单链的DNA。

第三步,以单链DNA为模板,在DNA聚合酶的作用下合成另一条互补的DNA链,形成双链DNA分子。

(三)寻根问底

1.为什么要构建基因文库?

直接从含有目的基因的生物体内提取不行吗?

构建基因文库是获取目的基因的方法之一,并不是惟一的方式。

如果所需要的目的基因序列已知,就可以通过PCR方式从含有该基因的生物的DNA中,直接获得,也可以通过反转录,用PCR方式从mRNA中获得,不一定要构建基因文库。

但如果所需要的目的基因的序列完全不知,或只知道目的基因序列的一段,或想从一种生物体内获得许多基因,或者想知道这种生物与另一种生物之间有多少基因不同,或者想知道一种生物在个体发育的不同阶段表达的基因有什么不同,或者想得到一种生物的全基因组序列,往往就需要构建基因文库。

2.将目的基因直接导入受体细胞不是更简便吗?

如果这么做,结果会怎样?

有人采用总DNA注射法进行遗传转化,即将一个生物中的总DNA提取出来,通过注射或花粉管通道法导入受体植物,没有进行表达载体的构建,这种方法针对性差,完全靠运气,也无法确定什么基因导入了受体植物。

此法目前争议颇多,严格来讲不算基因工程。

四、知识拓展

1.PCR的扩增过程是怎样的?

PCR扩增是获取目的基因的一种非常有用的方法,也是进行分子鉴定和检测的一种很灵敏的方法。

PCR的扩增反应过程包括以下几个主要过程。

第一步:

将反应体系(包括双链模板、引物、耐高温的DNA聚合酶、四种脱氧核糖核苷酸以及酶促反应所需的离子等)加热至90~95℃,使双链DNA模板两条链之间的氢键打开,变成单链DNA,作为互补链聚合反应的模板。

第二步:

将反应体系降温至55~60℃,使两种引物分别与模板DNA链3′端的互补序列互补配对,这个过程称为复性。

第三步:

将反应体系升温至70~75℃,在耐高温的DNA聚合酶催化作用下,将与模板互补的单个核苷酸加到引物所提供的3-OH上,使DNA链延伸,产生一条与模板链互补的DNA链。

上述三步反应完成后,一个DNA分子就变成了两个DNA分子,随着重复次数的增多,DNA分子就以2n的形式增加。

PCR的反应过程都是在PCR扩增仪中完成的。

2.如何从基因文库中找到所需要的基因?

从基因文库中找到目的基因是一件比较复杂的事情,要根据目的基因已有的某些信息来进行。

下面介绍一种根据基因的部分核苷酸序列找到目的基因的方法。

第一步,通过PCR方法将目的基因已知的部分核苷酸序列扩增出来,进行放射性同位素标记(也可以用别的标记方法进行,如生物素、荧光素等),即用标记了放射性同位素的目的DNA片段作为探针,与扩增出来的DNA杂交。

第二步,将基因文库中的所有菌落转移至硝酸纤维膜上(也可以用其他类型的膜),然后,通过处理溶解消化掉细菌中的蛋白质,并使DNA固定在膜上。

第三步,按Southern杂交的方法进行杂交。

第四步,在X光底片上出现黑斑的菌落,这表明这个菌落中含有所需要的目的基因(若选用别的标记方法,有阳性信号的菌落则含有所需要的目的基因)。

第五步,从该菌落中再提取目的基因。

3.基因工程载体的构建需要考虑哪些方面的因素?

道理何在?

主要考虑以下几方面的因素。

(1)基因的特点:

如果一个来自动物的目的基因含有内含子,就不能用于转基因植物,因为动物中内含子的剪接系统与植物的不同,植物不能将动物基因的内含子剪切掉,只能用该基因的cDNA。

基因的产物如果是一个糖蛋白,那么该基因在原核生物细菌中表达出来的蛋白就可能不具备天然状态下的活性,因为糖蛋白上的糖链是在内质网和高尔基体上加上的,而细菌无这些细胞器。

(2)要选择强启动子或组织特异性启动子。

启动子有强有弱,选择强启动子可以增加转录活性,使基因产物量增多。

如果希望基因在生物的某个组织表达,如只在植物种子中表达,就要选择种子中特异表达的启动子。

(3)要有选择标记基因,如抗生素基因,以便选择出真正的转基因生物。

4.什么是分子杂交技术的显示带?

分子杂交技术是基因工程中使用频率很高的一项技术,主要用于检测和鉴定,可以分为核酸分子之间的杂交和蛋白质分子之间的杂交。

常用的技术有:

Southern杂交──DNA和DNA分子之间的杂交。

目的基因是否整合到受体生物的染色体DNA中,这在真核生物中是目的基因可否稳定存在和遗传的关键。

如何证明这一点,就需要通过Southern杂交技术。

基本做法是:

第一步,将受体生物DNA提取出来,经过适当的酶切后,走琼脂糖凝胶电泳,将不同大小的片段分开;

第二步,将凝胶上的DNA片段转移到硝酸纤维素膜上;

第三步,用标记了放射性同位素(或生物素)的目的DNA片段作为探针与硝酸纤维素膜上的DNA进行杂交;

第四步,将X光底片压在硝酸纤维素膜上,在暗处使底片感光;

第五步,将X光底片冲洗,如果在底片上出现黑色条带,则表明受体植物染色体DNA上有目的基因。

Northern杂交──DNA和RNA分子之间的杂交。

它是检测目的基因是否转录出mRNA的方法,具体做法与Southern杂交相同,只是第一步从受体植物中提取的是mRNA而不是DNA,杂交带的显现也与Southern杂交相同。

Western杂交──蛋白质分子(抗原—抗体)之间的杂交。

它是检测目的基因是否表达出蛋白质的一种方法。

具体做法是:

第一步,将目的基因在大肠杆菌中表达出蛋白质;

第二步,将表达出的蛋白质注射动物进行免疫,产生相应的抗体,并提取出抗体(一抗);

第三步,从转基因生物中提取蛋白质,走凝胶电泳;

第四步,将凝胶中的蛋白转移到硝酸纤维素膜上;

第五步,将抗体(一抗)与硝酸纤维素膜上的蛋白杂交,这时抗体(一抗)与目的基因表达的蛋白(抗原)会特异结合。

由于这种抗原—抗体的结合显示不出条带,所以加入一种称为二抗的抗体,它可以与一抗结合,二抗抗体上带有特殊的标记。

如果目的基因表达出了蛋白质,则结果为阳性。

1.3基因工程的应用

1.举例说出基因工程应用及取得的丰硕成果。

2.关注基因工程的进展。

3.认同基因工程的应用促进生产力的提高。

基因工程在农业和医疗等方面的应用。

基因治疗。

三、小资料

1、表1-1转基因生物与目的基因的关系

转基因生物

目的基因

目的基因从何来

抗虫棉

Bt毒蛋白基因

苏云金芽孢杆菌

抗真菌立枯丝核菌的烟草

几丁质酶基因和抗毒素合成基因

抗盐碱和干旱作物

调节细胞渗透压的基因

耐寒的番茄

抗冻蛋白基因

抗除草剂大豆

抗除草剂基因

增强甜味的水果

降低乳糖的奶牛

甜味基因

肠乳糖酶基因

生产胰岛素的工程菌

人胰岛素基因

2、思考:

(1)用动物乳腺作为反应器,生产高价值的蛋白质(如教材中列举的血清白蛋白、抗凝血酶等)比工厂化生产的优越之处有哪些?

(2)用基因工程技术实现动物乳腺生物反应器的操作过程是怎样的?

第一个问题,既可以解决乳腺生物反应器的优越性问题,而且显示了社会需求是乳腺生物反应器这一创新成果产生的动力。

乳腺生物反应器的优点:

①产量高;

②质量好;

③成本低;

④易提取。

第二个问题,用基因工程技术实现动物乳腺生物反应器的操作过程与转基因动物操作过程相同。

而不同之处是:

为了将目标产品在奶中形成,需要使用乳腺组织中特异表达的启动子,要在编码目的蛋白质的基因序列前加上乳腺组织中特异表达的启动子构建成表达载体。

操作过程大致归纳为:

获取目的基因(例如血清白蛋白基因)→构建基因表达载体(在血清白蛋白基因前加特异表达的启动子)→显微注射导入哺乳动物受精卵中→形成胚胎→将胚胎送入母体动物→发育成转基因动物(只有在产下的雌性个体中,转入的基因才能表达)。

四、答案和提示

思考与探究

根据所学内容,试概括写出基因工程解决了哪些生活、生产中难以解决的问题。

基因工程可以生产人类需要的药物,如胰岛素、干扰素等。

我们吃的某些食品如番茄、大豆等也可以是基因工程产品。

农业生产中的抗虫棉、抗病毒烟草、抗除草剂大豆等都已进入商品化生产,上述产品有些是常规方法难以生产的或者生产成本过高。

五、知识拓展

1.利用微生物生产药物的优越性何在?

所谓利用微生物生产蛋白质类药物,是指将人们需要的某种蛋白质的编码基因,构建成表达载体后导入微生物,然后利用微生物发酵来生产蛋白质类药物。

与传统的制药相比有以下优越性:

(1)利用活细胞作为表达系统,表达效率高,无需大型装置和大面积厂房就可以生产出大量药品。

(2)可以解决传统制药中原料来源的不足。

例如,胰岛素是治疗糖尿病患者的药物,一名糖尿病患者每年需用的胰岛素需要从40头牛或50头猪的胰脏中才能提取到。

1978年科学家用2000L大肠杆菌发酵液得到100g胰岛素,相当于从1000kg猪胰脏中提取的量。

又如,生长素是治疗侏儒症患者的药物,治疗一名侏儒症患者每年需要从80具尸体的脑下垂体中提取生长素。

利用基因工程菌发酵生产就不需要从动物或人体上获取原料。

(3)降低生产成本,减少生产人员和管理人员。

2.在抗病毒转基因植物中,为什么使用病毒外壳蛋白基因可以抗病毒侵染?

关于病毒外壳蛋白(coatprotein,CP)基因导入植物后的抗病毒机理,目前有几种假说。

一种假说认为:

CP基因在植物细胞内表达积累后,当入侵的病毒裸露核酸进入植物细胞后,会立即被这些外壳蛋白重新包裹,从而阻止病毒核酸分子的复制和翻译。

另一种假说认为:

植物细胞内积累的病毒外壳蛋白会抑制病毒脱除外壳,使病毒核酸分子不能释放出来。

然而最近的研究表明,如果将病毒的外壳蛋白的AUG起始密码缺失,使之不能被翻译,或者将外壳蛋白基因变成反义RNA基因,整合到植物细胞染色体上,转基因植物则有很好的抗性。

因此,有人认为抗性机理不是外壳蛋白在起作用,而是CP基因转录出RNA后,与入侵病毒RNA之间的相互作用起到了抗性作用。

利用CP介导的抗病毒性还存在一些问题:

①转基因植物对病毒的抗性有局限性,仅限于特定的病毒(被使用CP基因的病毒)或密切相关的病毒;

②转基因植物大多数只是发病延缓,一般为两周,并非根治;

③潜在着植物表达的外壳蛋白包被与另一种病毒形成新的杂合病毒的危险。

1.4蛋白质工程的崛起

1.举例说出蛋白质工程崛起的缘由。

2.简述蛋白质工程的原理。

3.尝试运用逆向思维分析和解决问题。

1学习重点

(1)为什么要开展蛋白质工程的研究?

(2)蛋白质工程的原理。

蛋白质工程的原理。

三、答案和提示

1.蛋白质工程是应怎样的需求而崛起的?

提示(供教师在教学中参考):

蛋白质工程的崛起主要是工业生产和基础理论研究的需要。

而结构生物学对大量蛋白质分子的精确立体结构及其复杂的生物功能的分析结果,为设计改造天然蛋白质提供了蓝图。

分子遗传学的以定点突变为中心的基因操作技术为蛋白质工程提供了手段。

在已研究过的几千种酶中,只有极少数可以应用于工业生产,绝大多数酶都不能应用于工业生产,这些酶虽然在自然状态下有活性,但在工业生产中没有活性或活性很低。

这是因为工业生产中每一步的反应体系中常常会有酸、碱或有机溶剂存在,反应温度较高,在这种条件下,大多数酶会很快变性失活。

提高蛋白质的稳定性是工业生产中一个非常重要的课题。

一般来说,提高蛋白质的稳定性包括:

延长酶的半衰期,提高酶的热稳定性,延长药用蛋白的保存期,抵御由于重要氨基酸氧化引起的活性丧失等。

下面举一个如何通过蛋白质工程来提高重组β-干扰素专一活性和稳定性的例子。

干扰素是一种抗病毒、抗肿瘤的药物。

将人的干扰素的cDNA在大肠杆菌中进行表达,产生的干扰素的抗病毒活性为106U/mg,只相当于天然产品的十分之一,虽然在大肠杆菌中合成的β-干扰素量很多,但多数是以无活性的二聚体形式存在。

为什么会这样?

如何改变这种状况?

研究发现,β-干扰素蛋白质中有3个半胱氨酸(第17位、31位和141位),推测可能是有一个或几个半胱氨酸形成了不正确的二硫键。

研究人员将第17位的半胱氨酸,通过基因定点突变改变成丝氨酸,结果使大肠杆菌中生产的β-干扰素的抗病性活性提高到108U/mg,并且比天然β-干扰素的贮存稳定性高很多。

在基础理论研究方面,蛋白质工程是研究多种蛋白质的结构和功能、蛋白质折叠、蛋白质分子设计等一系列分子生物学基本问题的一种新型的、强有力的手段。

通过对蛋白质工程的研究,可以深入地揭示生命现象的本质和生命活动的规律。

2.蛋白质工程操作程序的基本思路与基因工程有什么不同?

基因工程是遵循中心法则,从DNA→mRNA→蛋白质→折叠产生功能,基本上是生产出自然界已有的蛋白质。

蛋白质工程是按照以下思路进行的:

确定蛋白质的功能→蛋白质应有的高级结构→蛋白质应具备的折叠状态→应有的氨基酸序列→应有的碱基排列,可以创造自然界不存在的蛋白质。

3.你知道酶工程吗?

绝大多数酶都是蛋白质,酶工程与蛋白质工程有什么区别?

酶工程就是指将酶所具有的生物催化作用,借助工程学的手段,应用于生产、生活、医疗诊断和环境保护等方面的一门科学技术。

概括地说,酶工程是由酶制剂的生产和应用两方面组成的。

酶工程的应用主要集中于食品工业、轻工业以及医药工业中。

α-淀粉

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1