哈工大机械原理大作业凸轮机构Word文档下载推荐.docx
《哈工大机械原理大作业凸轮机构Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《哈工大机械原理大作业凸轮机构Word文档下载推荐.docx(12页珍藏版)》请在冰豆网上搜索。
1.升程运动规律(3-4-5多项式)
升程:
2.远休止运动规律
远休止:
3.回程运动规律(正弦加速度)
回程:
4.近休止运动规律
近休止:
三、编程及代码
1.求位移、速度、加速度的程序(matlab)
h=100;
%升程最高为100
x1=0:
(pi/1000):
(5*pi/6);
x2=(5*pi/6):
(5*pi/6+pi/180*70);
x3=(5*pi/6+pi/180*70):
(5*pi/6+pi/180*70+pi/180*100);
x4=(5*pi/6+pi/180*70+pi/180*100):
(2*pi);
t1=x1./(5*pi/6);
t=x3-(5*pi/6+pi/180*70);
s1=h*(10*t1.^3-15*t1.^4+6*t1.^5);
s2=zeros(size(x2))+100;
s3=100*(1-t./(100*pi/180)+1/2/pi*sin(2*pi.*t/(100*pi/180)));
s4=zeros(size(x4));
plot(x1,s1,x2,s2,x3,s3,x4,s4);
ylabel('
升程/mm'
);
xlabel('
转角/rad'
title('
升程与转角函数图'
h_t=get(gca,'
Title'
set(h_t,'
FontSize'
18);
%以上是画升程与转角的函数的程序
w=pi;
v1=30*h*w/(5*pi/6)*(t1.^2-2*t1.^3+t1.^4);
v2=zeros(size(x2));
v3=-h*w/(100*pi/180)*(1-cos(2*pi/(100*pi/180)*t));
v4=zeros(size(x4));
plot(x1,v1,x2,v2,x3,v3,x4,v4);
上升速度/(mm/s)'
上升速度与转角函数图'
h_t=get(gca,'
Color'
'
r'
%以上是画速度与转角的函数图
a1=60*h*w^2/(5*pi/6)^2*(t1-3*t1.^2+2*t1.^3);
a2=zeros(size(x2));
a3=-2*pi*h*w^2/(100*pi/180)^2*sin(2*pi/(100*pi/180)*t);
a4=zeros(size(x4));
plot(x1,a1,x2,a2,x3,a3,x4,a4);
加速度/(mm^2/s)'
加速度/mm/(s^2)'
加速度与转角图'
18,'
b'
%以上是画加速度与转角的函数图
s11=h/(5*pi/6)*(10*3*t1.^2-15*4*t1.^3+6*5*t1.^4);
s22=zeros(size(x2));
s33=100*(-100*pi/180+1/(100*pi/180)*cos(2*pi/(100*pi/180)*t));
s44=zeros(size(x4));
plot(s1,s11,s2,s22,s3,s33,s4,s44);
由上述公式通过编程得到位移、速度、加速度曲线如下:
(编程如上)
2.绘制凸轮机构dφ/ds–s线图
%画的是d&
/ds与s的函数
可得到曲线图如下图所示:
e=20;
3.确定滚子半径
(1).先求凸轮理论轮廓曲线,程序如下:
s0=300;
X1=(s0+s1).*cos(x1)-e.*sin(x1);
Y1=(s0+s1).*sin(x1)+e*cos(x1);
X2=(s0+s2).*cos(x2)-e.*sin(x2);
Y2=(s0+s2).*sin(x2)+e*cos(x2);
X3=(s0+s3).*cos(x3)-e.*sin(x3);
Y3=(s0+s3).*sin(x3)+e*cos(x3);
X4=(s0+s4).*cos(x4)-e.*sin(x4);
Y4=(s0+s4).*sin(x4)+e*cos(x4);
plot(X1,Y1,X2,Y2,X3,Y3,X4,Y4);
axisequal
axisimage
axismanual
axisfill
(2).求其最小曲率半径
,程序如下:
XX1=diff(X1);
YY1=diff(Y1);
XX2=diff(X2);
YY2=diff(Y2);
XX3=diff(X3);
YY3=diff(Y3);
XX4=diff(X4);
YY4=diff(Y4);
%
DY1=YY1./XX1;
DY2=YY2./XX2;
DY4=YY4./XX4;
DY3=YY3./XX3;
YYY1=diff(DY1);
YYY2=diff(DY2);
YYY3=diff(DY3);
YYY4=diff(DY4);
[XN1YN1]=size(XX1);
[XN2YN2]=size(XX2);
[XN3YN3]=size(XX3);
[XN4YN4]=size(XX4);
Xx1=XX1(1,1:
(YN1-1));
Xx2=XX2(1,1:
(YN2-1));
Xx3=XX3(1,1:
(YN3-1));
Xx4=XX4(1,1:
(YN4-1));
DYY1=YYY1./Xx1;
DYY2=YYY2./Xx2;
DYY3=YYY3./Xx3;
DYY4=YYY4./Xx4;
Dy1=DY1(1,1:
Dy2=DY2(1,1:
Dy3=DY3(1,1:
Dy4=DY4(1,1:
%保证Dy的元素的个数和DYY相同
R1=(1+Dy1.^2).^1.5/abs(DYY1);
R2=(1+Dy2.^2).^1.5/abs(DYY2);
R3=(1+Dy3.^2).^1.5/abs(DYY3);
R4=(1+Dy4.^2).^1.5/abs(DYY4);
Rmin=min([min(R1),min(R2),min(R3),min(R4)]);
%计算最小的曲率半径
算出来为109.3295
由上述程序可得最小曲率半径为109.32mm,这里取半径为10.0mm
4.绘制凸轮轮廓曲线
编程如下:
Rr=5;
Xa1=diff(x1);
Xa2=diff(x2);
Xa3=diff(x3);
Xa4=diff(x4);
DYa1=YY1./Xa1;
DYa2=YY2./Xa2;
DYa3=YY3./Xa3;
DYa4=YY4./Xa4;
DXa4=XX4./Xa4;
DXa3=XX3./Xa3;
DXa2=XX2./Xa2;
DXa1=XX1./Xa1;
X1=X1(1,1:
YN1);
X2=X2(1,1:
YN2);
X3=X3(1,1:
YN3);
X4=X4(1,1:
YN4);
Y1=Y1(1,1:
Y2=Y2(1,1:
Y3=Y3(1,1:
Y4=Y4(1,1:
SX1=X1+Rr.*DYa1./(DXa1.^2+DYa1.^2).^0.5;
SX2=X2+Rr.*DYa2./(DXa2.^2+DYa2.^2).^0.5;
SX3=X3+Rr.*DYa3./(DXa3.^2+DYa3.^2).^0.5;
SX4=X4+Rr.*DYa4./(DXa4.^2+DYa4.^2).^0.5;
SX11=X1-Rr.*DYa1/(DXa1.^2+DYa1.^2).^0.5;
SX22=X2-Rr.*DYa2/(DXa2.^2+DYa2.^2).^0.5-2;
SX33=X3-Rr.*DYa3/(DXa3.^2+DYa3.^2).^0.5;
SX44=X4-Rr.*DYa4/(DXa4.^2+DYa4.^2).^0.5+1;
SY11=Y1+Rr.*DXa1/(DXa1.^2+DYa1.^2).^0.5;
SY22=Y2+Rr.*DXa2/(DXa2.^2+DYa2.^2).^0.5;
SY33=Y3+Rr.*DXa3/(DXa3.^2+DYa3.^2).^0.5;
SY44=Y4+Rr.*DXa4/(DXa4.^2+DYa4.^2).^0.5;
SY1=Y1-Rr.*DXa1/(DXa1.^2+DYa1.^2).^0.5;
SY2=Y2-Rr.*DXa2/(DXa2.^2+DYa2.^2).^0.5;
SY3=Y3-Rr.*DXa3/(DXa3.^2+DYa3.^2).^0.5;
SY4=Y4-Rr.*DXa4/(DXa4.^2+DYa4.^2).^0.5;
plot(SX1,SY1,'
SX2,SY2,'
SX3,SY3,'
SX4,SY4,'
%外包络线
plot(SX11,SY11,'
SX22,SY22,'
SX33,SY33,'
SX44,SY44,'
%内包络线
外包络线'
此程序外包络轮廓。