北师大八年级下册数学前三章复习培优题文档格式.docx
《北师大八年级下册数学前三章复习培优题文档格式.docx》由会员分享,可在线阅读,更多相关《北师大八年级下册数学前三章复习培优题文档格式.docx(10页珍藏版)》请在冰豆网上搜索。
②点0与0的距离为4;
③/AOB=150;
④S四边形aobo=6+3:
;
⑤Saoc+S\aob=6+'
.其中正确的结论是()
A.①②③⑤B•①②③④C.①②③④⑤D.①②③
7.如图,在Rt^ABC中,/C=90°
AC=BCAB=8,点D为AB的中点,若直角
MDN绕点D旋转,分别交AC于点E,交BC于点F,则下列说法正确的有()
①AE=CF②:
③DE=DF④若△ECF的面积为一个定值,则EF的长也是一个定值.
A.①②B.①③C.①②③D.①②③④
2.选择题(共7小题)
8.如图,边OA,0C分别在x轴、y轴的正半轴上,OA//BC,D是BC上一点,
BD^OQ近,AB=3,/OAB=45,E,F分别是线段OA,AB上的两个动点,且
始终保持/DEF=45,若厶AEF为等腰三角形,则OE的长为.
9.如图,△ABC中,D是AB的中点,DE±
AB,ZACE^ZBCE=180,EF±
AC交
AC于F,AC=12BC=8贝UAF=
10•如图,/BOC=60,点A是BO延长线上的一点,OA=10cm,动点P从点A
出发沿AB以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,
如果点P,Q同时出发,用t(s)表示移动的时间,当t=s时,△POQ是等
腰三角形;
当t=s时,△POQ是直角三角形.
11•如图所示,两块完全相同的含30,角的直角三角板叠放在一起,且/
DAB=30.有以下四个结论:
①AF丄BC;
②△AD3AACF;
③O为BC的中点;
④AG:
DE=;
:
4,其中正确结论的序号是.
A
B
12.如图,已知RtAABC^RtADEF,/C=ZF=90°
AC=DF=3BC=EF=4△DEF
绕着斜边AB的中点D旋转,DE、DF分别交ACBC所在的直线于点P,Q.当
△BDQ为等腰三角形时,AP的长为.
13.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满
足条件所有x的值是
3.选择题(共5小题)
15.如图,阅读下面的题目及分析过程,并按要求进行证明.
已知:
如图,E是BC的中点,点A在DE上,且/BAEKCDE求证:
AB=CD分析:
证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要要证AB=CD必须添加适当的辅助线,构造全等三角形或等腰三角形.请根据上述分析写出详细的证明过程(只需写一种思路)
16.如图,△ABC中AB=ACBC=6乩门工^二半,点P从点B出发沿射线BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.
(1)如图①,当点P为AB的中点时,求CD的长;
(2)如图②,过点P作直线BC的垂线垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?
请说明理由.
17•如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴、y轴正半轴交于点M、N,且OM=6cm,/OMN=30,等边△ABC的顶点B与原点O重合,BC边落在x轴的正半轴上,点A恰好落在线段MN上,如图2,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB、AC分别与线段MN交于点E、1=,在厶ABC平移的同时,点P从厶ABC的顶点B出发,以2cm/s的速度沿折线B-A-C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s),△PEF的面积为S(cm2).
(1)求等边△ABC的边长;
(2)当点P在线段BA上运动时,求S与t的函数关系式,并写出自变量t的取值范围;
(3)点P沿折线4A-C运动的过程中,是否在某一时刻,使△PEF为等腰三
18.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居
民15年的用水量.
(1)问:
年降水量为多少万m3?
每人年平均用水量多少m3?
(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?
(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每第5页(共9页)
淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?
19.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式
两种长方体形状的无盖纸盒
100个,
(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共
设做竖式纸盒x个.
①根据题意,完成以下表格:
竖式纸盒
横式纸盒(个)
纸盒
(个)
纸板
x
100-x
正方形纸板(张)
2(100-x)
长方形纸板(张)
4x
②按两种纸盒的生产个数来分,有哪几种生产方案?
(2)若有正方形纸162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290vav306.求a的值.
4.填空题(共3小题)
20.如图,△ABC绕点A顺时针旋转45°
得到△AB'
,若/BAC=90,AB=AC=:
,则图中阴影部分的面积等于—.
21.如图,在RtAABC中,/ABC=90,AB=BC西,将△ABC绕点C逆时针旋转
60°
得到△MNC,连接BM,贝UBM的长是
BA
22.如图,在RtAABC和RtABCD中,/BAC=/BDC=90,BC=8,AB=AC/CBD=30,
BD=V3,M,N分别在BD,CD上,/MAN=45,则△DMN的周长为.
B立'
D
5.解答题(共2小题)
23.
如图1,若厶ABC和厶ADE为等边三角形,M,N分别为EB,CD的中点
(1)求证:
CD=BE
(2)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?
若相等请证明,若不等于请说明理由;
(3)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?
若是请证明,若不是,请说明理由(可用第一问结论).
24.图中是一副三角板,45°
的三角板RtADEF的直角顶点D恰好在30°
的三角板
RtAABC斜边AB的中点处,/A=30°
/E=45°
/EDF=/ACB=90,DE交AC于点G,GM丄AB于M.
(1)如图①,当DF经过点C时,作CN丄AB于N,求证:
AM=DN;
(2)如图②,当DF//AC时,DF交BC于H,作HN丄AB于N,
(1)的结论仍然成立,请你说明理由.
参考答案
1.C;
2.C;
3.A;
4.B;
5.A;
6.A;
7.D;
二•选择题(共7小题)
8.也_;
9.10;
10.竺或10;
空;
11.①②③④;
12.竺或垃或旦;
13.1312_3_丄6—6一12—
或26或5或2;
14.丄va<
1;
31
15.;
16.;
17.;
18.;
19.;
20.匹-1;
21.匹+1;
22.麵+4;
23.;
24.;