辛店镇辛店小学五年级下册应掌握的概念Word格式.docx
《辛店镇辛店小学五年级下册应掌握的概念Word格式.docx》由会员分享,可在线阅读,更多相关《辛店镇辛店小学五年级下册应掌握的概念Word格式.docx(12页珍藏版)》请在冰豆网上搜索。
6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷
个数=中间数
7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×
个数÷
2(高斯求和公式)
8、列方程解应用题的思路:
A、审题并弄懂题目的已知条件和所求问题。
B、理清题目的等量关系。
C、设未知数,一般是把所求的数用X表示。
D、根据等量关系列出方程E、解方程F、检验G、作答。
第二单元确定位置
1、确定位置时,竖排叫做列,横排叫做行。
确定第几列一般从左往右数,确定第几行一般从前往后数。
2、数对(x,y)第1个数表示第几列(x),第2个数表示第几行(y),写数对时,是先写列数,再写行数。
3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示“经度”和“纬度”,“经度”和“纬度”都用度(°
)、分(′)、秒(″)表示。
4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行(y)上的数字不变。
举例:
将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;
将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。
5、将某个点向上下平移几格,只是行(y)上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。
将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;
将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。
第三单元公倍数和公因数
1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
一个数最大的因数等于这个数最小的倍数。
2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[,]表示。
几个数的公倍数也是无限的。
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号(,)。
两个数的公因数也是有限的。
4、两个素数的积一定是合数。
3×
5=15,15是合数。
5、两个数的最小公倍数一定是它们的最大公因数的倍数。
[6,8]=24,(6,8)=2,24是2的倍数。
6、求最大公因数和最小公倍数的方法:
倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
15和5,[15,5]=15,(15,5)=5
素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
[3,7]=21,(3,7)=1
一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。
[5,8]=40,(5,8)=1
相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
[9,8]=72,(9,8)=1
特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。
一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。
(详见课本31页内容)
数字与信息
1、我国目前采用的邮政编码为“四级六码”制。
第一、二位代表省(自治区、直辖市),第三位代表邮区,第四位代表县(市)邮电局,最后两位是投递局(区)的编号。
2、身份证编码规则:
1-6位数字为行政区划代码,其中1、2位数为各省级政府的代码,3、4位数为地、市级政府的代码,5、6位数为县、区级政府代码。
7-14位为您的出生日期,其中7-10位为出生年份(4位),11-12位为出生月份,13-14位为出生日期,15-17位为顺序码,是县、区级政府所辖派出所的分配码,其中单数为男性分配码,双数为女性分配码。
18位为校验码,是由号码编制单位按照统一的公式计算得出来的,其取值范围是0至10,当值等于10时,用罗马数字符χ表示。
第四单元认识分数
1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数,叫做分数单位。
一个分数的分母是几,它的分数单位就是几分之一。
2、分母越大,分数单位越小,最大的分数单位是
。
3、举例说明一个分数的意义:
表示把单位“1”平均分成7份,表示这样的3份.还表示把3平均分成7份,表示这样的1份。
吨表示把1吨平均分成7份,表示这样的3份.还表示把3吨平均分成7份,表示这样的1份。
4、4米的
和1米的
同样长。
5、分子比分母小的分数叫做真分数;
分子比分母大或者分子和分母相等的分数叫做假分数。
6、真分数小于1。
假分数大于或等于1。
真分数总是小于假分数。
7、男生人数是女生人数的
,则女生人数是男生人数的
8、分数与除法的关系:
被除数相当于分数的分子,除数相当于分数的分母。
被除数÷
除数=
如果用a表示被除数,b表示除数,可以写成a÷
b=
(b≠0)
9、能化成整数的假分数,它们的分子都是分母的倍数。
反过来,分子是分母倍数的假分数,都能化成整数。
(用分子除以分母)
10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。
带分数是假分数的另一种形式。
例如,
就可以看作是
(就是1)和
合成的数,写作
1
,读作一又三分之一。
带分数都大于真分数,同时也都大于1。
11、把分数化成小数的方法:
用分数的分子除以分母。
12、把小数化成分数的方法:
如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……
13、把假分数转化成整数或带分数的方法:
分子除以分母,如果分子是分母的倍数,可以化成整数;
如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
14、把带分数化成假分数的方法:
把整数乘分母加分子作为假分数的分子,分母不变。
15、把不是0的整数化成假分数的方法:
用整数与分母相乘的积作分子。
16、大于
而小于
的分数有无数个;
分数单位是
只有
一个。
17、分数大小比较的应用题:
工作效率大的快,工作时间小的快。
18、一些特殊分数的值:
=0.5
=0.25
=0.75
=0.2
=0.4
=0.6
=0.8
=0.125
=0.375
=0.625
=0.875
=0.1
=0.0625
=0.1875
=0.3125
=0.05
=0.04
=0.02
=0.01
19、求一个数是(占)另一个数的几分之几,用除法列算式计算。
第五单元找规律
1、单向平移求不同的和的个数规律:
方格的总个数—每次框出的个数+1=得到不同和的个数
2、双向平移
如果平移的方向既有横又有纵,我们只要分别探究出两个方向上各有几种不同的排列方法(和单向平移的规律一样),相乘的积是多少一共就有多少种不同的排列方法。
一共有多少种贴法=沿着长的贴法×
沿着宽的贴法
3、中间的数×
框出的个数=框出的每个数的和
框出的每个数的和÷
框出的个数=中间的数
(注意:
有些数字的和是不能框出来的,
(1)是框出的每个数的和÷
框出的个数≠中间的数;
(2)是虽然“框出的每个数的和÷
框出的个数=中间的数”,但中间的数在边上;
(3)出现有空白方格。
)
第六单元分数的基本性质
1、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。
它和整数除法中的商不变规律类似。
2、分子和分母只有公因数1,这样的分数叫最简分数。
约分时,通常要约成最简分数。
3、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
约分方法:
直接除以分子、分母的最大公因数。
例如:
4、把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。
通分过程中,相同的分母叫做这几个分数的公分母。
通分时,一般用原来几个分母的最小公倍数作公分母。
5、比较异分母分数大小的方法:
(1)先通分转化成同分母的分数再比较。
(2)化成小数后再比较。
(3)先通分转化成同分子的分数再比较。
(4)十字相乘法。
球的反弹实验
球的反弹高度实验的结论:
(1)用同一种球从不同高度下落,表示反弹高度与下落高度关系的分数大致不变,这说明同一种球的弹性是一样的。
(2)用不同的球从同一个高度下落,表示反弹高度与下落高度关系的分数是不一样的,这说明不同的球的弹性是不一样的。
第七单元统计
1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。
2、作复式折线统计图步骤:
①写标题和统计时间;
②注明图例(实线和虚线表示);
③分别描点、标数;
④实线和虚线的区分(画线用直尺)。
先画表示实线的统计图,再画虚线统计图。
不能同时描点画线,以免混淆。
(也可以先画虚线的统计图)
第八单元分数加法和减法
1、计算异分母分数加减法时,要先通分,再按同分母分数加减法计算;
计算结果能约分要约成最简分数,是假分数的要化为带分数;
计算后要验算。
2、分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和。
分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分母的差。
+
=
-
3、分母分子相差越大,分数就越接近0;
分子接近分母的一半,分数就接近
;
分子分母越接近,分数就越接近1。
≈0,
≈
,
≈1
4、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。
没有小括号,从左往右,依次运算;
有小括号,先算小括号里的算式。
5、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。
乘法分配律也适用分数的简便计算。
6、裂项公式(用于特殊的简便计算)
(分母是相邻两个自然数,分子是1)
(分母相差2,分子是2)
密铺
1、由线段围成的图形(三角形、长方形、正方形、梯形、平行四边形)能够密铺
2、由曲线围成的图形(圆)不能够密铺。
第九单元解决问题策略
1、倒推法是一种非常重要的数学思考方法,在计算、图形转换、时间推算等许多实际问题中都有应用。
倒推时还用到一些反义词呢,如:
上
下左右前后加减乘除
2、要正确解决多次倒推的策略就是对题目先进行“整理”,通过“整理”过程来理清思路,再倒推回去或列方程解答。
3、对于条件出现“一半”的复杂倒推题目,通常通过画线段图帮助分析列算式来解决。
第十单元圆
1、圆是由一条曲线围成的平面图形。
(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)
2、画圆时,针尖固定的一点是圆心,通常用字