微生物燃料电池新型产能生物技术Word格式.docx

上传人:b****5 文档编号:15956524 上传时间:2022-11-17 格式:DOCX 页数:5 大小:21.48KB
下载 相关 举报
微生物燃料电池新型产能生物技术Word格式.docx_第1页
第1页 / 共5页
微生物燃料电池新型产能生物技术Word格式.docx_第2页
第2页 / 共5页
微生物燃料电池新型产能生物技术Word格式.docx_第3页
第3页 / 共5页
微生物燃料电池新型产能生物技术Word格式.docx_第4页
第4页 / 共5页
微生物燃料电池新型产能生物技术Word格式.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

微生物燃料电池新型产能生物技术Word格式.docx

《微生物燃料电池新型产能生物技术Word格式.docx》由会员分享,可在线阅读,更多相关《微生物燃料电池新型产能生物技术Word格式.docx(5页珍藏版)》请在冰豆网上搜索。

微生物燃料电池新型产能生物技术Word格式.docx

但是,经过提升能量输出的微生物燃料电池则是新生的,为这一事物的实际应用提供了可能的机会。

  MFCs将可以被生物降解的物质中可利用的能量直接转化成为电能。

要达到这一目的,只需要使细菌从利用它的天然电子传递受体,例如氧或者氮,转化为利用不溶性的受体,比如MFC的阳极。

这一转换可以通过使用膜联组分或者可溶性电子穿梭体来实现。

然后电子经由一个电阻器流向阴极,在那里电子受体被还原。

与厌氧性消化作用相比,MFC能产生电流,并且生成了以二氧化碳为主的废气。

  与现有的其它利用有机物产能的技术相比,MFCs具有操作上和功能上的优势。

首先它将底物直接转化为电能,保证了具有高的能量转化效率。

其次,不同于现有的所有生物能处理,MFCs在常温,甚至是低温的环境条件下都能够有效运作。

第三,MFC不需要进行废气处理,因为它所产生的废气的主要组分是二氧化碳,一般条件下不具有可再利用的能量。

第四,MFCs不需要能量输入,因为仅需通风就可以被动的补充阴极气体。

第五,在缺乏电力基础设施的局部地区,MFCs具有广泛应用的潜力,同时也扩大了用来满足我们对能源需求的燃料的多样性。

微生物燃料电池中的代谢

  为了衡量细菌的发电能力,控制微生物电子和质子流的代谢途径必须要确定下来。

除去底物的影响之外,电池阳极的势能也将决定细菌的代谢。

增加MFC的电流会降低阳极电势,导致细菌将电子传递给更具还原性的复合物。

因此阳极电势将决定细菌最终电子穿梭的氧化还原电势,同时也决定了代谢的类型。

根据阳极势能的不同能够区分一些不同的代谢途径:

高氧化还原氧化代谢,中氧化还原到低氧化还原的代谢,以及发酵。

因此,目前报道过的MFCs中的生物从好氧型、兼性厌氧型到严格厌氧型的都有分布。

  在高阳极电势的情况下,细菌在氧化代谢时能够使用呼吸链。

电子及其相伴随的质子传递需要通过NADH脱氢酶、泛醌、辅酶Q或细胞色素。

Kim等研究了这条通路的利用情况。

他们观察到MFC中电流的产生能够被多种电子呼吸链的抑制剂所阻断。

在他们所使用的MFC中,电子传递系统利用NADH脱氢酶,Fe/S蛋白以及醌作为电子载体,而不使用电子传递链的2号位点或者末端氧化酶。

通常观察到,在MFCs的传递过程中需要利用氧化磷酸化作用,导致其能量转化效率高达65%。

常见的实例包括假单胞菌,微肠球菌以及Rhodoferaxferrireducens。

  如果存在其它可替代的电子受体,如硫酸盐,会导致阳极电势降低,电子则易于沉积在这些组分上。

当使用厌氧淤泥作为接种体时,可以重复性的观察到沼气的产生,提示在这种情况下细菌并未使用阳极。

如果没有硫酸盐、硝酸盐或者其它电子受体的存在,如果阳极持续维持低电势则发酵就成为此时的主要代谢过程。

例如,在葡萄糖的发酵过程中,涉及到的可能的反应是:

C6H12O6+2H2O=4H2+2CO2+2C2H4O2或6H12O6=2H2+2CO2+C4H8O2。

它表明,从理论上说,六碳底物中最多有三分之一的电子能够用来产生电流,而其它三分之二的电子则保存在产生的发酵产物中,如乙酸和丁酸盐。

总电子量的三分之一用来发电的原因在于氢化酶的性质,它通常使用这些电子产生氢气,氢化酶一般位于膜的表面以便于与膜外的可活动的电子穿梭体相接触,或者直接接触在电极上。

同重复观察到的现象一致,这一代谢类型也预示着高的乙酸和丁酸盐的产生。

一些已知的制造发酵产物的微生物分属于以下几类:

梭菌属,产碱菌,肠球菌,都已经从MFCs中分离出来。

此外,在独立发酵实验中,观察到在无氧条件下MFC富集培养时,有丰富的氢气产生,这一现象也进一步的支持和验证这一通路。

  发酵的产物,如乙酸,在低阳极电势的情况下也能够被诸如泥菌属等厌氧菌氧化,它们能够在MFC的环境中夺取乙酸中的电子。

  代谢途径的差异与已观测到的氧化还原电势的数据一起,为我们一窥微生物电动力学提供了一个深入的窗口。

一个在外部电阻很低的情况下运转的MFC,在刚开始在生物量积累时期只产生很低的电流,因此具有高的阳极电势。

这是对于兼性好氧菌和厌氧菌的选择的结果。

经过培养生长,它的代谢转换率,体现为电流水平,将升高。

所产生的这种适中的阳极电势水平将有利于那些适应低氧化的兼性厌氧微生物生长。

然而此时,专性厌氧型微生物仍然会受到阳极仓内存在的氧化电势,同时也可能受到跨膜渗透过来的氧气影响,而处于生长受抑的状态。

如果外部使用高电阻时,阳极电势将会变低,甚至只维持微弱的电流水平。

在那种情况下,将只能选择适应低氧化的兼性厌氧微生物以及专性厌氧微生物,使对细菌种类的选择的可能性被局限了。

MFC中的阳极电子传递机制

  电子向电极的传递需要一个物理性的传递系统以完成电池外部的电子转移。

这一目的既可以通过使用可溶性的电子穿梭体,也可以通过膜结合的电子穿梭复合体。

  氧化性的、膜结合的电子传递被认为是通过组成呼吸链的复合体完成的。

已知细菌利用这一通路的例子有Geobactermetallireducens、嗜水气单胞菌以及Rhodoferaxferrireducens。

决定一个组分是否能发挥类似电子门控通道的主要要求在于,它的原子空间结构相位的易接近性。

门控的势能与阳极的高低关系则将决定实际上是否能够使用这一门控。

  MFCs中鉴定出的许多发酵性的微生物都具有某一种氢化酶,例如布氏梭菌和微肠球菌。

氢化酶可能直接参加了电子向电极的转移过程。

最近,这一关于电子传递方法的设想由McKinlay和Zeikus提出,但是它必须结合可移动的氧化穿梭体。

它们展示了氢化酶在还原细菌表面的中性红的过程中扮演了某一角色。

  细菌可以使用可溶性的组分将电子从一个细胞的化合物转移到电极的表面,同时伴随着这一化合物的氧化。

在很多研究中,都向反应器中添加氧化型中间体比如中性红,劳氏紫和甲基紫萝碱。

经验表明这些中间体的添加通常都是很关键的。

但是,细菌也能够自己制造这些氧化中间体,通过两种途径:

通过制造有机的、可以被可逆的还原化合物,和通过制造可以被氧化的代谢中间物。

  第一种途径体现在很多种类的细菌中,例如腐败谢瓦纳拉菌以及铜绿假单胞菌。

近期的研究表明这些微生物的代谢中间物影响着MFCs的性能,甚至普遍干扰了胞外电子的传递过程。

失活铜绿假单胞菌的MFC中的这些与代谢中间体产生相关的基因,可以将产生的电流单独降低到原来的二十分之一。

由一种细菌制造的氧化型代谢中间体也能够被其他种类的细菌在向电极传递电子的过程中所利用。

  通过第二种途径细菌能够制造还原型的代谢中间体——但还是需要利用初级代谢中间物——使用代谢中间物如Ha或者HgS作为媒介。

Schroder等利用K12产生氢气,并将浸泡在生物反应器中的由聚苯胺保护的铂催化电极处进行再氧化。

通过这种方法他们获得了高达/cm2的电流密度,这在之前是做不到。

相似的,Straub和Schink发表了利用Sulfurospirillumdeleyianum将硫还原至硫化物,然后再由铁重氧化为氧化程度更高的中间物。

  

评价MFCs性能的参数

  使用微生物燃料电池产生的功率大小依赖于生物和电化学这两方面的过程。

底物转化的速率

  受到如下因素的影响,包括细菌细胞的总量,反应器中混合和质量传递的现象,细菌的动力学,生物量的有机负荷速率,质子转运中的质子跨膜效率,以及MFC的总电势。

阳极的超极化

  一般而言,测量MFCs的开放电路电势的值从750mV~798mV。

影响超极化的参数包括电极表面,电极的电化学性质,电极电势,电极动力学以及MFC中电子传递和电流的机制。

阴极的超极化

  与在阳极观测到的现象相似,阴极也具有显着的电势损失。

为了纠正这一点,一些研究者们使用了赤血盐溶液。

但是,赤血盐并不是被空气中的氧气完全重氧化的,所以应该认为它是一个电子受体更甚于作为媒介。

如果要达到可持续状态,MFC阴极最好是开放性的阴极。

质子跨膜转运的性能

  目前大部分的MFCs研究都使用Nafion—质子转换膜。

然而,Nafion—膜对于污染是很敏感的,例如铵。

而目前最好的结果来自于使用Ultrex阳离子交换膜。

Liu等不用使用膜,而转用碳纸作为隔离物。

虽然这样做显着降低了MFC的内在电阻,但是,在有阳极电解液组分存在的情况下,这一类型的隔离物会刺激阴极电极的生长,并且对于阴极的催化剂具有毒性。

而且目前尚没有可信的,关于这些碳纸-阴极系统在一段时期而不是短短几天内的稳定性方面的数据。

MFC的内在电阻

  这一参数既依赖于电极之间的电解液的电阻值,也决定于膜电阻的阻值。

对于最优化的运转条件,阳极和阴极需要尽可能的相互接近。

虽然质子的迁移会显着的影响与电阻相关的损失,但是充分的混合将使这些损失最小化。

性能的相关数据

  在平均阳极表面的功率和平均MFC反应器容积单位的功率之间,存在着明显的差异。

表2提供了目前为止报道过的与MFCs相关的最重要的的结果。

大部分的研究结果都以电极表面的mA/m以及mW/m2两种形式表示功率输出的值,是根据传统的催化燃料电池的描述格式衍生而来的。

其中后一种格式对于描述化学燃料电池而言可能已经是充分的,但是MFCs与化学燃料电池具有本质上的差异,因为它所使用的催化剂具有特殊的条件要求,并且占据了反应器中特定的体积,因此减少了其中的自由空间和孔隙的大小。

每一个研究都参照了以下参数的特定的组合:

包括反应器容积、质子交换膜、电解液、有机负荷速率以及阳极表面。

但仅从这一点出发要对这些数据作出横向比较很困难。

从技术的角度来看,以阳极仓内容积所产生的瓦特/立方米为单位的形式,作为反应器的性能比较的一个基准还是有帮助的。

这一单位使我们能够横向比较所有测试过的反应器,而且不仅仅局限于已有的研究,还可以拓展到其它已知的生物转化技术。

  此外,在反应器的库仑效率和能量效率之间也存在着显着的差异。

库仑效率是基于底物实际传递的电子的总量与理论上底物应该传递的电子的总量之间的比值来计算。

能量效率也是电子传递的能量的提示,并结合考虑了电压和电流。

如表2中所见,MFC中的电流和功率之间的关系并非总是明确的。

需要强调的是在特定电势的条件下电子的传递速率,以及操作参数,譬如电阻的调整。

如果综合考虑这些参数的问题的话,必须要确定是最大库仑效率还是最大能量效率才是最终目标。

目前观测到的电极表面功率输出从mW/m2~w/m2都有分布。

优化

  生物优化提示我们应该选择合适的细菌组合,以及促使细菌适应反应器内优化过的环境条件。

虽然对细菌种子的选择将很大程度上决定细菌增殖的速率,但是它并不决定这一过程产生的最终结构。

使用混合的厌氧-好氧型淤泥接种,并以葡萄糖作为营养源,可以观察到经过三个月的微生物适应和选择之后,细菌在将底物转换为电流的速率上有7倍的增长。

如果提供更大的阳极表面供细菌生长的话,增长会更快。

  批处理系统使能够制造可溶性的氧化型中间体的微生物的积累成为了可能。

持续的系统性选择能形成生物被膜的种类,它们或者能够直接的生长在电极上,或者能够通过生物被膜的基质使用可移动的穿梭分子来传递电子。

  通

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1