数据结构回溯法求装载问题文档格式.docx

上传人:b****6 文档编号:15949862 上传时间:2022-11-17 格式:DOCX 页数:9 大小:106.60KB
下载 相关 举报
数据结构回溯法求装载问题文档格式.docx_第1页
第1页 / 共9页
数据结构回溯法求装载问题文档格式.docx_第2页
第2页 / 共9页
数据结构回溯法求装载问题文档格式.docx_第3页
第3页 / 共9页
数据结构回溯法求装载问题文档格式.docx_第4页
第4页 / 共9页
数据结构回溯法求装载问题文档格式.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

数据结构回溯法求装载问题文档格式.docx

《数据结构回溯法求装载问题文档格式.docx》由会员分享,可在线阅读,更多相关《数据结构回溯法求装载问题文档格式.docx(9页珍藏版)》请在冰豆网上搜索。

数据结构回溯法求装载问题文档格式.docx

此时,应往回移动(回溯)至最近的活结点处,并使这个活结点成为当前扩展结点。

回溯法以这种工作方式递归地在状态空间中搜索,直到找到所要求的解或解空间中以无活结点时为止。

回溯法与穷举法有某些联系,他们都是基于试探。

穷举法要将一个解的各个部分全都生成后,才检查是否满足条件,若不满足,则直接放弃该完整解、然后再尝试另一个可能的完整解,没有沿着一个可能的完整解的各个部分逐步回退生成解的过程。

而对于回溯法,一个解的各个部分是逐步生成的,当发现当前生成的某部分不满足约束条件,就放弃该部所做的工作,退到上一步进行新的尝试,而不是放弃整个解重来。

一般来说,回溯法要比穷举法效率高一些。

可用回溯法求解的问题P,通常要能表达为:

对于已知的由n元组(1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。

其中Si是分量xi的定义域,且|Si|有限,i=1,2,…,n。

我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。

解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。

但显然,其计算量是相当大的。

我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,xi)满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(j<

i)元组(x1,x2,…,xj)一定也满足D中仅涉及到x1,x2,…,xj的所有约束,i=1,2,…,n。

换句话说,只要存在0≤j≤n-1,使得(x1,x2,…,xj)违反D中仅涉及到x1,x2,…,xj的约束之一,则以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)一定也违反D中仅涉及到x1,x2,…,xi的一个约束,n≥i>

j。

因此,对于约束集D具有完备性的问题P,一旦检测断定某个j元组(x1,x2,…,xj)违反D中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题P的解,因而就不必去搜索它们、检测它们。

回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。

回溯法首先将问题P的n元组的状态空间E表示成一棵高为n的带权有序树T,把在E中求问题P的所有解转化为在T中搜索问题P的所有解。

树T类似于检索树,它可以这样构造:

设Si中的元素可排成xi

(1),xi

(2),…,xi(mi-1),|Si|=mi,i=1,2,…,n。

从根开始,让T的第I层的每一个结点都有mi个儿子。

这mi个儿子到它们的双亲的边,按从左到右的次序,分别带权xi+1

(1),xi+1

(2),…,xi+1(mi),i=0,1,2,…,n-1。

照这种构造方式,E中的一个n元组(x1,x2,…,xn)对应T中的一个叶子结点,T的根到这个叶子结点的路径上依次的n条边的权分别为x1,x2,…,xn,反之亦然。

另外,对于任意的0≤i≤n-1,E中n元组(x1,x2,…,xn)的一个前缀I元组(x1,x2,…,xi)对应于T中的一个非叶子结点,T的根到这个非叶子结点的路径上依次的I条边的权分别为x1,x2,…,xi,反之亦然。

特别,E中的任意一个n元组的空前缀(),对应于T的根。

因而,在E中寻找问题P的一个解等价于在T中搜索一个叶子结点,要求从T的根到该叶子结点的路径上依次的n条边相应带的n个权x1,x2,…,xn满足约束集D的全部约束。

在T中搜索所要求的叶子结点,很自然的一种方式是从根出发,按深度优先的策略逐步深入,即依次搜索满足约束条件的前缀1元组(x1i)、前缀2元组(x1,x2)、…,前缀I元组(x1,x2,…,xi),…,直到i=n为止。

在回溯法中,上述引入的树被称为问题P的状态空间树;

树T上任意一个结点被称为问题P的状态结点;

树T上的任意一个叶子结点被称为问题P的一个解状态结点;

树T上满足约束集D的全部约束的任意一个叶子结点被称为问题P的一个回答状态结点,它对应于问题P的一个解。

二、描述问题

有一批共n个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i的重量为

,且,要求确定是否有一个合理的装载方案可将这n个集装箱装上这2艘轮船。

如果有,请给出该方案。

三、由原理得到的算法、算法的复杂度、改进

1、可得算法回溯法解装载问题时,用子集树表示解空间最合适。

voidBacktrack(intt)

{

if(t>

n)

Output(x);

else

for(inti=0;

i<

z;

i++)

x[t]=i;

if(Constraint(t)&

&

Bound(t))

Backtrack(t+1);

}

Maxloading调用递归函数backtrack实现回溯。

Backtrack(i)搜索子集树第i层子树。

i>

n时,搜索至叶节点,若装载量>

bestw,更新bestw。

当i<

=n时,扩展节点Z是子集树内部节点。

左儿子节点当cw+w[i]<

=c时进入左子树,对左子树递归搜索。

右儿子节点表示x[i]=0的情形。

2、时间复杂度

Backtrack动态的生成解空间树。

每个节点花费O

(1)时间。

Backtrack执行时间复杂度为O(2n)。

另外Backtrack还需要额外O(n)递归栈空间。

3、可能的改进

可以再加入一个上界函数来剪去已经不含最优解的子树。

设Z是解空间树第i层上的一个当前扩展结点,curw是当前载重量,maxw是已经得到的最优载重量,如果能在当前结点确定curw+剩下的所有载重量≤maxw则可以剪去些子树。

所以可以引入一个变量r表示剩余的所有载重量。

虽然改进后的算法时间复杂度不变,但是平均情况下改进后算法检查结点数较少。

进一步改进:

(1)首先运行只计算最优值算法,计算最优装载量,再运行backtrack算法,并在算法中将bestw置为W,在首次到叶节点处终止。

(2)在算法中动态更新bestw。

每当回溯一层,将x[i]存入bestx[i].从而算法更新bestx

所需时间为O(2n)。

四、算法实现

intBacktrack(inti)//搜索第i层节点

intj_index;

//如果到达叶结点,则判断当前的cw,如果比前面得到的最优解bestw好,则替换原最优解。

if(i>

if(cw>

bestw)

for(j_index=1;

j_index<

=n;

j_index++)

bestx[j_index]=x[j_index];

bestw=cw;

return1;

}//搜索子树

r-=w[i];

if(cw+w[i]<

=c)//搜索左子树,如果当前剩余空间可以放下当前物品也就是,cw+w[i]<

=c

x[i]=1;

cw+=w[i];

//把当前载重cw+=w[i]

Backtrack(i+1);

//递归访问其左子树,Backtrack(i+1)

cw-=w[i];

//访问结束,回到调用点,cw-=w[i]

if(cw+r>

bestw)//搜索右子树

x[i]=0;

r+=w[i];

intmaxloading(intmu[],intc,intn,int*mx)

loadingx;

x.w=mu;

x.x=mx;

x.c=c;

x.n=n;

x.bestw=0;

x.cw=0;

x.Backtrack(1

);

returnx.bestw;

五、总结

由此,我们可以总结出回溯法的一般步骤:

(1)针对所给问题,定义问题的解空间;

(2)确定易于搜索的解空间结构;

(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

通过DFS思想完成回溯,完整过程如下:

(1)设置初始化的方案(给变量赋初值,读入已知数据等)。

(2)变换方式去试探,若全部试完则转(7)。

(3)判断此法是否成功(通过约束函数),不成功则转

(2)。

(4)试探成功则前进一步再试探。

(5)正确方案还未找到则转

(2)。

(6)已找到一种方案则记录并打印。

(7)退回一步(回溯),若未退到头则转

(2)。

(8)已退到头则结束或打印无解。

可以看出,回溯法的优点在于其程序结构明确,可读性强,易于理解,而且通过对问题的分析可以大大提高运行效率。

但是,对于可以得出明显的递推公式迭代求解的问题,还是不要用回溯法,因为它花费的时间比较长。

附录(源码)

#include<

stdlib.h>

stdio.h>

iostream.h>

typedefintStatus;

typedefintType;

intn=0;

//集装箱数

Type*x=(Type*)malloc((50)*sizeof(Type));

//当前解

Type*bestx=(Type*)malloc((50)*sizeof(Type));

//当前最优解

Typec=0,//第一艘轮船的载重量

cw=0,//当前载重量

bestw=0,//当前最优载重量

r=0,

*w=(Type*)malloc((50)*sizeof(Type));

//集装箱重量数组

}//搜索自树

//递归访问其左子树,Backtrack(i+1)

cw-=w

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 生物学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1