热力学Word下载.docx
《热力学Word下载.docx》由会员分享,可在线阅读,更多相关《热力学Word下载.docx(23页珍藏版)》请在冰豆网上搜索。
课
题
热力学第一定律
教学目的
1.掌握热力学系统及其构成,热力学状态量。
2.掌握功、热量以及内能的物理意义及其数学表达。
3.掌握热力学第一定律,会应用分析热力学过程中的能量转换。
教学进程
教法研究
多粒子统计理论和热力学都是研究物质热现象和热运动规律的学科。
多粒子统计理论从物质的微观结构为基础,应用统计方法,解释与揭示物质宏观热现象及其有关规律的本质。
热力学不考虑物质的内部机构,从观测和实验事实作为依据,总结基本规律,主要从能量观点出发,分析研究热运动规律。
一、基本概念
1.热力学系统(thermodynamicsystem):
热力学所研究的具体对象都是大量微观粒子组成的宏观客体,我们把所研究的宏观课题叫做热力学系统,简称系统。
把与系统相互作用的其他物体叫做外界或环境(enviroment)。
①孤立系:
如果一个系统与外界没有任何相互作用,则称此系统为孤立系。
一杯水被绝热层包裹。
②封闭系(closedsystem):
如果一个系统与外界只有能量交换,而无物质交换,便称此系统为封闭系,简称闭系。
一杯水在空气中。
③开放系(opensystem):
如果一个系统与外界既有能量交换又有物质交换,则称此系为开放系,简称开系。
人体就是开放系统。
由空气中的一杯沸水降温的过程,引入热力学过程
2.热力学过程
热力学系统的状态随时间变化的过程称之为热力学过程。
如等温膨胀、热传导过程等。
①非静态过程:
实际的热力学过程进行得都非常快,在新的平衡态尚未建立之时,就进行了下一步的变化,所以当系统从某一平衡态开始变化,经过一热力学过程而达到另一平衡态时,中间往往经历一系列的非平衡态,我们把折椅热力学过程叫做非静态过程。
②准静态过程(quasi-staticprocess):
在一过程中,系统在每一时刻都处在平衡态这一过程叫做准静态过程。
这是一种理想的极限过程,只有在无限缓慢的条件下才能达到。
分别以迅速的等温压缩过程和无限缓慢的等温压缩过程为例加以说明。
③用P-V图来描述准静态过程。
只有准静态过程才能用P-V图描述。
图上每一条图线表示一个准静态过程,图线上每一点表示准静态过程中的一个平衡状态。
二、准静态过程的功
高中学习过,做功和传热是改变系统状态的两种方式。
1.准静态过程功的计算
气体膨胀过程对外所作的功。
气缸横截面S,气体压强P,当活塞移动一微小dl,气体对外做功dA=PSdl=PdV。
对于dV不同的正负情况,表示气体是膨胀还是压缩以及气体对外还是外界对气体做功。
在一有限过程中,气体对外界所作的功
(此式只适合于准静态过程)。
2.体积功的图示
结合P-V图和一定的数学知识,可以得系统在一过程中所做的功不仅与系统的始末状态有关,还与具体过程有关,功是一个过程量。
以上从a到b的三个过程中,气体所作的功是不一样的。
3.注意
①功是一个过程量;
②
用此式进行计算可以利用理想气体状态方程写出P的函数关系式;
③结合图像法可以简化计算;
④做功可以改变系统的状态。
三、热量(heat)
1.热量:
本质上是因温度不同而传递的能量。
热量的传递是以温度差的存在为前提的。
由于温度差的存在而导致的能量的传递叫传热。
热量与功一样是一个过程量。
2.理想气体的mol热容量(heatcapacity)
热量计算公式dQ=McdT,现在定义Mc为物体的热容量,如果取1mol物体则相应的热容量为Mmolc,称为物体的mol热容量,用大写Cmol表示。
1mol物质温度升高或降低一度时所吸收或放出的热量
。
热容量对于不同的热力学过程不一样,最常用的是摩尔定压热容量和摩尔定体热容量,分别用Cp,m,Cv,m表示。
四、内能——物体系统内部状态所决定的能量
1.理想气体的内能
质量为M的理想气体内能为
,状态一定,温度一定,一定质量的理想气体内能是恒定的;
温度变化,状态变化,理想气体的内能变化,变化的大小只与温度变化大小有关,与过程无关。
2.热力学系统状态变化总是通过外界对系统做功、热传导或者两者并施。
实验证明,系统状态发生变化时,只要初末给定,则不论经历的过程如何,状态的变化是恒定的。
内能只与系统的初末状态有关,与系统经历的过程无关。
五、热力学第一定律(firstlawofthermodynamics)
1.在一般情况下,当系统的状态发生变化时,做功和热传递往往同时存在,如果系统外界对传递的热量为Q,系统内能从U1变化到U2,同时系统对外做功A,那么Q=U2-U1+A。
热力学第一定律的表述:
系统从外界吸收的热量,一部分用于增加系统的内能,另一部分用于系统对外界做功。
它是能量守恒定律在热现象的宏观过程中的具体化。
2.注意:
①热力学第一定律各个量统一单位为焦耳。
②Q,U2-U1,A可正可负,其规定如下:
Q>
0系统吸热,Q<
0系统放热;
U2-U1>
0系统内能增加,U2-U1<
0系统内能减少;
A>
0系统对外界做功,A<
0外界对系统做功。
③对于一个微小过程dQ=dU+dA,理想气体的准静态过程。
④热力学第一定律适用于一切热力学系统的一切热力学过程,只要始末态适平衡态,对准静态过程、非静态过程都适用。
⑤热力学第一定律可以表述为第一类永动机适不可能制成的。
对物理学的划分以及各个组成部分的研究特点介绍
分别举一个孤立系、闭系和开系的例子,帮助理解。
理想化过程
图像法是物理学中常用的方法
对于高中已经接触过的物理量,需要将高中的简化模型转换为更普适的情况。
突出物理量的特征
举例子加深理解
突出物理量的物理含义及特征
需要强调Q,A取正负值的物理意义,代表的不同的热力学过程。
总
结
分
析
热力学第一定律对理想气体的应用
1.掌握热容量的概念,以及等体热容量和等压热容量的表达式。
2.掌握等体过程、等压过程、等温过程以及绝热过程四个等值过程的过程方程。
3.掌握四个等值过程的功、热量、内能增量的计算。
回顾热力学第一定律的表述,及其各个物理量的意义。
这一节将热力学第一定律应用于理想气体的几个特殊等值过程。
一、等体过程(isochoricprocess)
1.特征:
等体过程中气体的体积在变化过程中保持不变,dV=0。
2.过程方程:
P/T=常量。
过程中压强与温度的比值保持恒定。
3.能量转换关系:
体积恒定则A=0;
由热力学第一定律得出dQV=
,则
4.定容摩尔热容量(heatcapacityatconstantvolume)
mol定体热容量是在体积不变的过程中,1mol物质的热容量
QV=U2-U1=M/μCV,m(T2-T1)。
二、等压过程(学生推导为主)(isobaricprocess)
等压过程中气体的压强在变化过程中保持不变,dp=0。
V/T=常量。
过程中体积与温度之比保持恒定。
dA=pdV=M/μRdT
dU=M/μCV,mdT
dQV=M/μCV,mdT+M/μRdT
4.摩尔定压热容量(heatcapacityatconstantpressure)
mol定压热容量是在压强不变的过程中,1mol物质的热容量
=CV,m+R——迈耶公式,仅适用于理想气体,
。
5.比热容比
A=M/μR(T2-T1),
U2-U1=M/μCV,m(T2-T1)
QP=A+U2-U1=M/μCP,m(T2-T1)。
三、等温过程(学生推导为主)(isothermalprocess)
等温过程中气体的温度在变化过程中保持不变,dT=0。
PV=常量。
过程中体积与压强的乘积保持不变。
dT=0得出dU=0;
则dQT=dA;
四、绝热过程(adiabaticprocess)
绝热过程中系统与外界完全没有能量交换,dQ=0。
2.能量转换关系:
由热力学第一定律得出dU=-A=M/μCV,mdT;
U2-U1=M/μCV,m(T2-T1),
A=-M/μCV,m(T2-T1)。
3.过程方程:
绝热过程中P、T、V三个量同时都要发生变化。
4.绝热过程的过程曲线
绝热线变化要比等温线要快,膨胀同样得体积,绝热过程压强下降的比等温过程压强下降的多。
因为等温过程的温度不变,压强下降完全是由于体积膨胀引起,而绝热过程中体积膨胀同时温度要下降,所以压强下降除了体积膨胀引起的,还有温度下降引起,所以绝热过程压强下降的要多。
最后将四个等值过程中的公式加以总结,方便记忆。
五、知识的应用
例题1质量为2.8×
10-3Kg,P=1atm,T=27℃的氮气,先保持体积不变,压强增加到3atm,再经过一个等温过程,压强降至1atm,然后等压下体积压缩一半,试求氮气全部过程中的内能变化,对外做功和吸收的热量。
例题2设有8×
10-3Kg的氧气,体积为0.41×
10-3m3,温度为27℃,如果氧气左绝热膨胀,膨胀后的体积为4.1×
10-3m3,问气体做功为多少,如果气体等温膨胀到4.1×
10-3m3,温这时气体做功为多少?
为新授课做准备
由学生高中学习过的知识入手,学生易于理解,映象深刻
示范性推导出等体过程中的各个公式,要求学生用类似方法推导等压过程和等温过程的部分公式。
四个等值过程公式较多,但公式之间是有联系的,加强学生公式推导能力有利于他们更好掌握公式。
知识应用强化理解和应用
循环过程卡诺循环
1.理解循环过程。
2.理解热机效率与致冷系数,并会加以计算。
3.理解卡诺循环的几个过程,并掌握卡诺循环中热机效率和致冷效率的大小。
4.了解制冷机和热泵对热力学知识的应用。
回顾上节课四个等值过程中的功、热量、内能增量的计算公式。
一、循环过程(cuclicprocess)
1.循环过程:
系统从某一状态出发,经过一系列的状态变化过程后又回到原来状态的整个过程。
由于内能是一个只与状态有关的量,因此循环过程中系统的内能的变化为零,这是循环过程的一个重要特征。
如