届高考数学一轮复习第八章立体几何考点规范练39直线平面平行的判定与性质文新人教B版Word格式.docx

上传人:b****6 文档编号:15910331 上传时间:2022-11-17 格式:DOCX 页数:13 大小:127.62KB
下载 相关 举报
届高考数学一轮复习第八章立体几何考点规范练39直线平面平行的判定与性质文新人教B版Word格式.docx_第1页
第1页 / 共13页
届高考数学一轮复习第八章立体几何考点规范练39直线平面平行的判定与性质文新人教B版Word格式.docx_第2页
第2页 / 共13页
届高考数学一轮复习第八章立体几何考点规范练39直线平面平行的判定与性质文新人教B版Word格式.docx_第3页
第3页 / 共13页
届高考数学一轮复习第八章立体几何考点规范练39直线平面平行的判定与性质文新人教B版Word格式.docx_第4页
第4页 / 共13页
届高考数学一轮复习第八章立体几何考点规范练39直线平面平行的判定与性质文新人教B版Word格式.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

届高考数学一轮复习第八章立体几何考点规范练39直线平面平行的判定与性质文新人教B版Word格式.docx

《届高考数学一轮复习第八章立体几何考点规范练39直线平面平行的判定与性质文新人教B版Word格式.docx》由会员分享,可在线阅读,更多相关《届高考数学一轮复习第八章立体几何考点规范练39直线平面平行的判定与性质文新人教B版Word格式.docx(13页珍藏版)》请在冰豆网上搜索。

届高考数学一轮复习第八章立体几何考点规范练39直线平面平行的判定与性质文新人教B版Word格式.docx

B.存在一条直线a,a⊂α,a∥β

C.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α

D.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α

5.已知平面α和不重合的两条直线m,n,下列选项正确的是(  )

A.如果m⊂α,n⊄α,m,n是异面直线,那么n∥α

B.如果m⊂α,n与α相交,那么m,n是异面直线

C.如果m⊂α,n∥α,m,n共面,那么m∥n

D.如果m⊥α,n⊥m,那么n∥α

6.如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,G为MC的中点.则下列结论不正确的是(  )

A.MC⊥AN

B.GB∥平面AMN

C.平面CMN⊥平面AMN

D.平面DCM∥平面ABN

7.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:

①若m∥l,且m⊥α,则l⊥α;

②若m∥l,且m∥α,则l∥α;

③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;

④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.

其中正确命题的个数是(  )

A.1B.2C.3D.4

8.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有     条. 

9.如图,四棱锥P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为        . 

10.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件                 时,有平面D1BQ∥平面PAO. 

11.如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.求证:

BD∥平面FGH.

 

12.

(2017安徽淮南一模)如图,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.

(1)若BE=3EC,求证:

DE∥平面A1MC1;

(2)若AA1=1,求三棱锥A-MA1C1的体积.

能力提升

13.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4.又H,G分别为BC,CD的中点,则(  )

A.BD∥平面EFG,且四边形EFGH是平行四边形

B.EF∥平面BCD,且四边形EFGH是梯形

C.HG∥平面ABD,且四边形EFGH是平行四边形

D.EH∥平面ADC,且四边形EFGH是梯形

14.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为(  )

A.

B.

C.

D.

15.设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且     ,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题. 

①α∥γ,n⊂β;

②m∥γ,n∥β;

③n∥β,m⊂γ.

可以填入的条件有(  )

A.①②B.②③

C.①③D.①②③

16.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为     . 

17.如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°

BC=CD=

AD.

(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;

(2)证明:

平面PAB⊥平面PBD.

高考预测

18.如图,已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4,现将△AEF沿线段EF折起到△A'

EF位置,使得A'

C=2

.

(1)求五棱锥A'

-BCDFE的体积.

(2)在线段A'

C上是否存在一点M,使得BM∥平面A'

EF?

若存在,求A'

M;

若不存在,请说明理由.

参考答案

1.D 解析对A,直线m,n可能平行、异面或相交,故A错误;

对B,直线m与n可能平行,也可能异面,故B错误;

对C,m与n垂直而非平行,故C错误;

对D,垂直于同一平面的两直线平行,故D正确.

2.C 解析对于图形①,平面MNP与AB所在的对角面平行,即可得到AB∥平面MNP;

对于图形④,AB∥PN,即可得到AB∥平面MNP;

图形②③无论用定义还是判定定理都无法证明线面平行.

3.C 解析②中α内的直线与l可异面,④中可有无数条.

4.D 解析若α∩β=l,a∥l,a⊄α,a⊄β,

则a∥α,a∥β,故排除A.

若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.

若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,

则a∥β,b∥α,故排除C.选D.

5.C 解析如图

(1)可知A错;

如图

(2)可知B错;

如图(3),m⊥α,n是α内的任意直线,都有n⊥m,故D错.

∵n∥α,∴n与α无公共点,

∵m⊂α,∴n与m无公共点,又m,n共面,∴m∥n,故选C.

6.

C 解析显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),取AN的中点H,连接HB,MH,则MC∥HB,又HB⊥AN,所以MC⊥AN,所以A正确;

由题意易得GB∥MH,又GB⊄平面AMN,MH⊂平面AMN,

所以GB∥平面AMN,所以B正确;

因为AB∥CD,DM∥BN,且AB∩BN=B,CD∩DM=D,

所以平面DCM∥平面ABN,所以D正确.

7.B 解析对①,两条平行线中有一条与一平面垂直,则另一条也与这个平面垂直,故①正确;

对②,直线l可能在平面α内,故②错误;

对③,三条交线除了平行,还可能相交于同一点,故③错误;

对④,结合线面平行的判定定理和性质定理可判断其正确.综上①④正确.故选B.

8.6 解析过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.

9.

平行 解析取PD的中点F,连接EF,AF,在△PCD中,EF􀰿

CD.

又∵AB∥CD且CD=2AB,

∴EF􀰿

AB,

∴四边形ABEF是平行四边形,

∴EB∥AF.

又∵EB⊄平面PAD,AF⊂平面PAD,

∴BE∥平面PAD.

10.Q为CC1的中点 解析

如图,假设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.

连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO.

又D1B⊄平面PAO,QB⊄平面PAO,

所以D1B∥平面PAO,QB∥平面PAO.

又D1B∩QB=B,所以平面D1BQ∥平面PAO.

故Q满足条件Q为CC1的中点时,有平面D1BQ∥平面PAO.

11.

证法一连接DG,CD,设CD∩GF=M.连接MH.

在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.

则M为CD的中点.又H为BC的中点,所以HM∥BD,

又HM⊂平面FGH,BD⊄平面FGH,

所以BD∥平面FGH.

证法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,

所以四边形HBEF为平行四边形,可得BE∥HF.

在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.

又GH∩HF=H,所以平面FGH∥平面ABED.

因为BD⊂平面ABED,所以BD∥平面FGH.

12.

(1)证明如图1,取BC中点N,连接MN,C1N,

∵M是AB中点,∴MN∥AC∥A1C1,

∴M,N,C1,A1共面.

∵BE=3EC,∴E是NC的中点.

又D是CC1的中点,

∴DE∥NC1.

∵DE⊄平面MNC1A1,NC1⊂平面MNC1A1,

∴DE∥平面A1MC1.

(2)解如图2,当AA1=1时,则AM=1,A1M=

A1C1=

∴三棱锥A-MA1C1的体积

AM·

AA1·

A1C1=

图1

图2

13.

B 解析如图,由题意得,EF∥BD,且EF=

BD.

HG∥BD,且HG=

BD,

∴EF∥HG,且EF≠HG.

∴四边形EFGH是梯形.

又EF∥平面BCD,而EH与平面ADC不平行,故B正确.

14.A 解析(方法一)∵α∥平面CB1D1,平面ABCD∥平面A1B1C1D1,α∩平面ABCD=m,平面CB1D1∩平面A1B1C1D1=B1D1,

∴m∥B1D1.

∵α∥平面CB1D1,平面ABB1A1∥平面DCC1D1,α∩平面ABB1A1=n,平面CB1D1∩平面DCC1D1=CD1,

∴n∥CD1.

∴B1D1,CD1所成的角等于m,n所成的角,即∠B1D1C等于m,n所成的角.

∵△B1D1C为正三角形,∴∠B1D1C=60°

∴m,n所成的角的正弦值为

(方法二)由题意画出图形如图,将正方体ABCD-A1B1C1D1平移,

补形为两个全等的正方体如图,易证平面AEF∥平面CB1D1,

所以平面AEF即为平面α,

m即为AE,n即为AF,所以AE与AF所成的角即为m与n所成的角.

因为△AEF是正三角形,所以∠EAF=60°

故m,n所成角的正弦值为

15.C 解析由面面平行的性质定理可知,①正确;

当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.故选C.

16.

 解析取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,故AC⊥平面SGB,

所以AC⊥SB.

因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.

同理SB∥FE.

又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF􀰿

AC􀰿

DE,

所以四边形DEFH为平行四边形.

又AC⊥SB,SB∥HD,DE∥AC,所以DE⊥HD,

所以四边形DEFH为矩形,其面积S=HF·

HD=

17.

(1)解取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.

理由如下:

因为AD∥BC,BC=

AD,

所以BC

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1