第三章 高分子的溶液性质复习课程Word格式.docx

上传人:b****6 文档编号:15891031 上传时间:2022-11-16 格式:DOCX 页数:14 大小:120.20KB
下载 相关 举报
第三章 高分子的溶液性质复习课程Word格式.docx_第1页
第1页 / 共14页
第三章 高分子的溶液性质复习课程Word格式.docx_第2页
第2页 / 共14页
第三章 高分子的溶液性质复习课程Word格式.docx_第3页
第3页 / 共14页
第三章 高分子的溶液性质复习课程Word格式.docx_第4页
第4页 / 共14页
第三章 高分子的溶液性质复习课程Word格式.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

第三章 高分子的溶液性质复习课程Word格式.docx

《第三章 高分子的溶液性质复习课程Word格式.docx》由会员分享,可在线阅读,更多相关《第三章 高分子的溶液性质复习课程Word格式.docx(14页珍藏版)》请在冰豆网上搜索。

第三章 高分子的溶液性质复习课程Word格式.docx

高分子溶液的光散射,折光指数,透明性,偶极矩,介电常数等。

本章将着重讨论高分子溶液的热力学性质和流体力学性质。

第一节高聚物的溶解

3.1.1高聚物溶解过程的特点

※高聚物的溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”;

然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。

对于交联的高聚,只能停留在溶胀阶段,不会溶解。

※溶解度与高聚物的分子量有关,分子量大的溶解度小,对交联高聚物来说,交联度大的溶胀度小,交联度小的溶胀度大。

※晶态高聚物的溶解比非晶态高聚物要困难得多:

非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。

晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难。

3.1.2高聚物溶解过程的热力学解释

溶解过程是溶质分子和溶剂分子互相混合的过程,在恒温恒压下,这种过程能自发进行的必要条件是Gibbs自由能的变化△F<0。

即:

式中T是溶解时的温度,△SM是混合熵。

因为在溶解过程中,分子的排列趋于混乱,熵的变化是增加的,即△SM>0,因此△F的正负取决于混合热△HM的正负及大小。

1)对于极性高聚物在极性溶剂中,由于高分子与溶剂分子的强烈相互作用,溶解时放热△HM<0,使体系的自由能降低(△F<0),所以溶解过程能自发进行。

2)对非极性高聚物,溶解过程一般是吸热的(△HM>0),故只有在∣△HM∣<T·

∣△SM∣时才能满足上式的溶解条件。

也就是说升高温度T或者减小混合热△HM才能使体系自发溶解。

非极性高聚物与溶剂互相混合时的混合热△HM可以借用小分子的溶度公式来计算。

假定两种液体在混合过程中没有体积的变化,则混合热为:

――――Hildebrand溶度公式(只适用于非极性的溶液体系),式中φ是体积分数,V是溶液的总体积,△E/V是在零压力下单位体积的液体变成气体的气化能,也可称为“内压”或“内聚能密度”。

下标1和2分别表示溶剂和溶质。

从式中可看出,混合热△HM是由于两种液体的内聚能密度不等而引起的。

如果我们把内聚能密度的平方根用δ(溶度参数)来表示:

则Hildebrand公式可写成:

等式的左面表示单位体积溶液的混合热,它的大小取决于两种液体的δ值,δ的量纲是(卡/厘米3)/1/2。

如果δ1和δ2愈接近,则△HM愈小,两种液体愈能相互溶解。

※对高聚物来说.如果我们能找到某种溶剂,它与高聚物能以任何比例互溶,互相不发生反应或缔合,而且溶解过程没有体积和熵的变化,这种溶剂的δ值就可作为该高聚物的溶度参数。

当然,这种考虑只适用于非极性的溶液体系,因为这是Hildebrand公式成立的条件。

※高聚物的溶度参数的确定:

(1)由实验测定高聚物的溶度参数,常用稀溶液粘度法或测定交联网溶胀度的方法。

稀溶液粘度法:

高分子稀溶液的粘度用极限粘数(即特性粘度)表征,其值与高分子线团在溶液中的流体力学体积成正比。

因此可以想象溶剂与高分子的溶度参数愈接近,则△HM值愈小,自发溶解的倾向愈大,这时不仅可使高分子一个个地分散在溶剂中,而且每个分子链还能充分伸展。

使流体力学体积增大,导致溶液粘度增大。

如果我们用若干种溶度参数不同的液体作为溶剂,分别测定高聚物在这些溶剂中的极限粘数,从极限粘数与溶剂的溶度参数关系中可找到极限粘数极大值所对应的溶度参数,那么我们可将此值看作为高聚物的溶度参数。

溶脓度法:

与此法类似,

(2)聚合物的溶度参数还可由重复单元中各基团的摩尔引力常数F直接计算得到:

将重复单元中所有基团的摩尔引力常数加起来,除以重复单元的摩尔体积v,就可算出聚合物的溶度参数。

 

例:

聚甲基丙烯酸甲酯,

∑F=131.5十2×

148.3十32.0十326.6=786.7

重复单元的分子量为l00.1,高聚物的密度为1.19

δ2=∑F/V=786.7×

(1.19/100.1)=9.35

3)对于稍有极性的高聚物的溶解,Hildebrand公式修正如下:

式中ω是指极性部分的溶度参数,Ω是指非极性部分的溶度参数

P是分子的极性分数,d是非极性分数.

对于极性的高聚物,不但要求它与溶剂的溶度参数中的非极性部分接近,还要求极性部分也接近,才能溶解。

如果溶质与溶剂间能生成氢键,则将大大有利于溶质的溶解。

3.1.3溶剂的选择

1)非晶态的非极性高聚物:

根据Hildebrand公式选择溶度参数相近的溶剂即可。

2)非晶态的极性高聚物:

要求溶剂的溶度参数和极性都要与高聚物接近才能使其溶解。

总之,既要符合“相似相溶”的规律,又要符合“极性相近”的原则。

3)结晶性非极性高聚物的溶剂选择最为困难。

它的溶解包括两个过程,其一是结晶部分的熔融,其二是高分子与溶剂的混和。

两者都是吸热过程,△HM比较大,即使溶度参数与高聚物相近的液体,也很难满足丛△HM<T△SM的条件,因此只能提高温度,使T△SM值增大,才能溶解。

例如聚乙烯要在120℃以上才能溶于四氢萘、对二甲苯等非极性溶剂中;

聚丙烯要在135℃才溶于十氢萘中。

结晶性极性高聚物如果能与溶剂生成氢键,即使温度很低也能溶解。

这是因为氢键的生成是放热反应。

如尼龙在室温下能溶于甲酸、冰醋酸、浓硫酸和酚类;

涤纶树脂能溶于苯酚、间甲酚与邻氯苯酚等;

聚甲醛能溶于六氟丙酮水合物,都是因为溶质与溶剂间生成氢键所致。

3)混合溶剂

混合溶剂的溶度参数:

式中φ1和φ2:

分别表示两种纯溶剂的体积分数,δ1和δ2是两种纯溶剂的溶度参数。

第二节高分子溶液的热力学性质

高分子稀溶液是分子分散体系,溶液性质不随时间的延续而变化,是热力学稳定体系。

※F1ory—Huggins高分子溶液理论-----似晶格理论:

1.溶液中分子的排列也像晶体一样,是一种晶格的排列,每个溶剂分子占一个格子,每个高分子占有X个相连的格子。

X为高分子与溶剂分子的体积比,也就是把高分子看作由x个链段组成的,每个链段的体积与溶剂分子的体积相等。

2.高分于链是柔性的,所有构象具有相同的能量。

3.溶液中高分子链段是均匀分布的,即链段占有任一格子的几率相等。

当高分子溶液的温度到达θ温度时,其热力学性质与理想溶液没有偏差。

这样,我们就可以利用有关理想溶液的定律来处理高分子溶液了。

通常,可以通过选择溶剂和温度以满足△μE1(非理想化学位,即过量化学位)=0的条件,我们把这种条件称为θ条件,或θ状态,θ状态下所用的溶剂称为θ溶剂,θ状态下所处的温度称为θ温度。

※Flory-Krigbaum稀溶液理论的基本假定是:

(1)整个高分子稀溶液可看作被溶剂化了的高分子“链段云”一朵朵地分散在溶液中。

对整个溶液来说链段分布是不均匀的,有的地方链段分布较密,有的地方几乎没有链段。

即使在链段云内部链段分布也是不均匀的,中心部位的密度较大,愈向外密度愈小,并假设链段云内链段密度的径向分布符合高斯分布。

(2)在稀溶液中,一个高分子很难进入另一个高分子所占的区域,也就是说,每个高分子都有一个排斥体积。

排斥体积的大小与高分子相互接近时的自由能变化有关。

如果高分子链段与溶剂分子的相互作用能大于高分子链段与高分子链段的相互作用能,则高分子被溶剂化而扩张,使高分子不能彼此接近;

高分子的排斥体积就很大;

如果高分子链段与高分子链段的相互作用能等于高分子链段与溶剂的相互作用能,高分子与高分子可以与溶剂分子一样彼此接近,互相贯穿,这样排斥体积为零,相当于高分子处于无扰的状态。

第三节高分子的亚浓溶液

3.3.1临界交叠浓度c*

首先提出亚浓溶液概念的是P.G.deGennes。

考虑问题的出发点是:

在稀溶液中,高分子线团是互相分离的,溶液中的链段分布不均一(图a),当浓度增大到某种程度后,高分子线团互相穿插交叠,整个溶液中的链段分布趋于均一(图c),这种溶液称为亚浓溶液,在这两种溶液之间,若溶液浓度从稀向浓逐渐增大,孤立的高分子线团则逐渐靠近,靠近到开始成为线团密堆积时的浓度,称为临界交叠浓度,用c*表示,c*又称为接触浓度。

根据试样的分子量与旋转半径,可由下式估算c*之值:

3.3.3亚浓溶液中高分子链的尺寸

※呈交联网。

网眼的平均尺寸用ξ表示,称为相关长度。

基于两点假定:

1.当c>c*时,因为高分子链的尺寸比网眼尺寸长得多,所以ξ值只与浓度有关而与分子量无关。

2.当c=c*时,因为线团刚刚接触,还未相互贯穿,因此网眼的大小与一个线团的尺寸相差不多。

相关长度ξ将随浓度c的增大而很快地减小。

※串滴模型:

就一条链而言,我们可以把此链看作由一串尺寸为ξ的单元或小滴组成。

在每个小液滴内部,链不与其它的链相作用。

串滴模型结论:

亚浓溶液中高分子链的尺寸不仅与分子量有关,而且与溶液的浓度有关。

Flory的结论:

分子尺寸只取决于分子量,而与浓度无关。

第四节高分子浓溶液

3.4.1高聚物的增塑

为了改变某些高聚物的使用性能或加工性能,常常在高聚物中混溶一定量的高沸点、低挥发性的小分子物质,例如在聚氯乙烯成型过程中常加入30一50%的邻苯二甲酸二丁酯。

这样,一方面可以降低它的流动温度,以便在较低温度下加工.另一方面,由于这些物质仍保留在制件中,使分子链比末增塑前较易活动,其玻璃化温度自80℃降至室温以下,弹性大大增加。

从而改善了制件的耐寒、抗冲击等性能,使聚氯乙烯能制成柔软的薄膜、胶管、电线包皮和人造革等制品。

添加到线型高聚物中使其塑性增大的物质称为增塑剂。

※从化学结构上可将增塑剂分为如下几类:

(1)邻苯二甲酸酯类;

(2)磷酸酯类;

(3)乙二醇和甘油类;

(4)己二酸和癸二酸酯类;

(5)脂肪酸酯类;

(6)环氧类;

(7)聚酯类;

(8)其它如氯化石蜡、氯化联苯、丙烯腈—丁二烯共聚物等。

增塑剂不仅限于小分子物质,某些柔性的高分子物质也可起到增塑作用。

※非极性增塑剂溶于非极性聚合物中:

使高分子链之间的距离增大,从而使高分子链之间的作用力减弱,链段间相互运动的摩擦力也减弱。

这样,使原来在本体中无法运动的链段能够运动,因而玻璃化温度降低使高弹态在较低温度下出现。

所以,增塑剂的体积愈大其隔离作用愈大。

而且长链分子比环状分子与高分子链的接触机会多。

因而所起的增塑作用也较为显著。

非极性增塑剂使非极性高聚物的玻璃化温度降低的数值,与增塑剂的体积分数成正比:

φ是增塑剂的体积分数,α是比例常数。

※极性增塑剂溶于极性聚合物中:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 起诉状

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1