北京市丰台区届高三第二次模拟考试理科综合物理试题.docx
《北京市丰台区届高三第二次模拟考试理科综合物理试题.docx》由会员分享,可在线阅读,更多相关《北京市丰台区届高三第二次模拟考试理科综合物理试题.docx(13页珍藏版)》请在冰豆网上搜索。
北京市丰台区届高三第二次模拟考试理科综合物理试题
北京市丰台区2018届高三第二次模拟考试理科综合物理试题
一、单选题
1.1827年,英国植物学家布朗在显微镜下观察悬浮在液体里的花粉颗粒,发现花粉颗粒在做永不停息的无规则运动,这种运动称为布朗运动.下列说法正确的是
A.花粉颗粒越大,花粉颗粒无规则运动越明显
B.液体温度越低,花粉颗粒无规则运动越明显
C.布朗运动就是液体分子永不停息的无规则运动
D.布朗运动是由于液体分子的无规则运动引起的
2.如图所示,用一束太阳光照射横截面为三角形的玻璃砖,在光屏上能观察到一条彩色光带.下列说法正确的是()
A.在各种色光中,玻璃对红光的折射率最大
B.在各种色光中,紫光光子比绿光光子的能量大
C.此现象是因为光在玻璃砖中发生全反射形成的
D.减小太阳光的入射角度,各种色光会在光屏上依次消失,最先消失的是红光
3.如图甲所示为一列简谐横波在t=2s时的波形图,图乙为这列波上P点的振动图像,下列说法正确的是()
A.该横波向右传播,波速为0.4m/s
B.t=2s时,Q点的振动方向为y轴负方向
C.从r=2s到t=7s内,P质点沿x轴向右平移2.0m
D.从t=2s到t=7s内,Q质点通过的路程为30cm
4.天体演变的过程中,红巨星发生“超新星爆炸”后,可以形成中子星,中子星具有极高的密度.若已知某中子星的半径为R,密度为ρ,引力常量为G.则()
A.该中子星的卫星绕它做匀速圆周运动的最小周期为
B.该中子星的卫星绕它做匀速圆周运动的最大加速度为
C.该中子星的卫星绕它做匀速圆周运动的最大角速度为
D.该中子星的卫星绕它做匀速圆周运动的最大线速度为
5.如图所示,(a)→(b)→(c)→(d)→(e)过程是交流发电机发电的示意图,线圈的ab边连在金属滑环K上,cd边连在金属滑环L上,用导体制成的两个电刷分别压在两个滑环上,线圈在转动时可以通过滑环和电刷保持与外电路连接.下列说法正确的是
A.图(a)中,线圈平面与磁感线垂直,磁通量变化率最大
B.从图(b)开始计时,线圈中电流i随时间t变化的关系是
C.当线圈转到图(c)位置时,感应电流最小,且感应电流方向改变
D.当线圈转到图(d)位置时,感应电动势最小,ab边感应电流方向为b→a
6.如图所示,滑块A以一定的初速度从粗糙斜面体B的底端沿斜面向上滑,然后又返回,整个过程中斜面体B与地面之间没有相对滑动。
那么滑块向上滑和向下滑的两个过程中()
A.滑块向上滑动的加速度等于向下滑动的加速度
B.滑块向上滑动的时间等于向下滑动的时间
C.斜面体B受地面的支持力大小始终等于A与B的重力之和
D.滑块上滑过程中损失的机械能等于下滑过程中损失的机械能
7.电流和电压传感器可以测量电流和电压,传感器与计算机相连,对采集的数据进行处理,并拟合出相应的函数图像,如图所示,把原来不带电的电容器接人电路,闭合电键后。
下列图像中能够正确反映充电过程中电荷量与电压、电流与时间关系的是()
A.B.C.D.
8.发光二极管,也就是LED,是一种固态的半导体器件,它可以直接把电能转化为光能.LED的核心是一个半导体晶片。
半导体晶片由两部分组成,一部分是P型半导体,空穴浓度高,另一部分是N型半导体,自由电子浓度高。
这两种半导体连接起来,它们之间就形成一个“P-N结”.当电流通过晶片时,电子就会被推向P区,在P区里电子跟空穴复合,以光子的形式发出能量,就发光了.不同的半导体材料中电子和空穴所处的能量状态不同,电子和空穴复合时释放出的能量也不同。
下列说法正确的是()
A.发光二极管的发光原理与普通白炽灯的发光原理相同
B.发光二极管的发光原理与普通日光灯的发光原理相同
C.电子和空穴复合时释放出的光子能量越大,则发出光的波长越短
D.红光发光二极管发出红光的频率比蓝光发光二极管发出蓝光的频率大
二、实验题
9.
(1)用如图所示的多用电表进行如下实验。
①将两表笔的金属部分分别与被测电阻的两根引线相接,发现指针偏转角度过大。
为了得到比较准确的测量结果,请从下列选项中挑出合理的步骤,并按_________(填选项前的字母)的顺序进行操作,再将两表笔分别与待测电阻相接,进行测量。
A.将K旋转到电阻挡“×lk”的位置
B.将K旋转到电阻挡“×10”的位置
C.将两表笔短接,旋动部件T,对电表进行校准
②测量二极管的正向导通电阻时,红表笔应接二极管的_________(填“正极”、“负极”)
(2)用如图所示的装置可以验证动量守恒定律。
①实验中质量为m1的入射小球和质量为m2的被碰小球的质量关系是m1___________m2(选填“大于”、“等于”、“小于”)
②图中O点是小球抛出点在地面上的投影。
实验时,先让入射小球m1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP.然后,把被碰小球m2静置于轨道的水平部分,再将入射小球m1从斜轨上S位置静止释放,与小球m2相碰,并多次重复本操作。
接下来要完成的必要步骤是_________。
(填选项前的字母)
A.用天平测量两个小球的质量m1、m2
B.测量小球m1开始释放的高度h
C.测量抛出点距地面的高度H
D.分别通过画最小的圆找到m1、m2相碰后平均落地点的位置M、N
E.测量平抛射程OM、ON
③若两球相碰前后的动量守恒,其表达式可表示为_________________(用②中测量的量表示);
④经过测定,m1=45.0g,m2=7.5g,小球落地的平均位置距O点的距离如图所示.若用长度代表速度,则两球碰撞前“总动量”之和为_________g·cm,两球碰撞后“总动量”之和为________g·cm.
⑤用如图装置也可以验证碰撞中的动量守恒,实验步骤与上述实验类似。
图中D、E、F到抛出点B的距离分别为LD、LE、LF.若两球相碰前后的动量守恒,其表达式可表示为____.
A.m1LF=m1LD+m2LE
B.m1L2E=m1L2D+m2L2F
C.m1=m1+m2
D.LE=LF–LD
三、解答题
10.如图所示是一种质谱仪的原理图,离子源(在狭缝S1上方,图中未画出)产生的带电粒子经狭缝S1与S2之间的电场加速后,进入P1和P2两板间相互垂直的匀强电场和匀强磁场区域.沿直线通过狭缝S3垂直进入另一匀强磁场区域,在洛伦兹力的作用下带电粒子打到底片上形成一细条纹.若从离子源产生的粒子初速度为零、电荷量为+q、质量为m,S1与S2之间的加速电压为U1,P1和P2两金属板间距离为d,两板间匀强磁场的磁感应强度为B1,测出照相底片上的条纹到狭缝S3的距离L.求:
(1)粒子经加速电场加速后的速度v1;
(2)P1和P2两金属板间匀强电场的电压U2;
(3)经S3垂直进入的匀强磁场的磁感应强度B2.
11.现代科学实验证明了场的存在,静电场与重力场有一定相似之处.带电体在匀强电场中的偏转与物体在重力场中的平抛运动类似.
(1)一质量为m的小球以初速度v0水平抛出,落到水平面的位置与抛出点的水平距离为x.已知重力加速度为g,求抛出点的高度和小球落地时的速度大小.
(2)若该小球处于完全失重的环境中,小球带电量为+q,在相同位置以相同初速度抛出.空间存在竖直向下的匀强电场,小球运动到水平面的位置与第
(1)问小球的落点相同.若取抛出点电势为零,试求电场强度的大小和落地点的电势.
(3)类比电场强度和电势的定义方法,请分别定义地球周围某点的“重力场强度EG”和“重力势φG”,并描绘地球周围的“重力场线”和“等重力势线”.
12.如图所示,间距为L=1m的两条足够长的平行金属导轨与水平面的夹角为θ=37°,底端用电阻为R=0.8Ω的导体MN相连接,导轨电阻忽略不计.磁感应强度为B=1T的匀强磁场与导轨平面垂直,磁场区域上下边界距离为d=0.85m,下边界aa′和导轨底端相距为3d.一根质量为m=1kg、电阻为r=0.2Ω的导体棒放在导轨底端,与导轨垂直且接触良好,并以初速度v0=10m/s沿斜面向上运动,到达磁场上边界bb′时,恰好速度为零.已知导轨与棒之间的动摩擦因数为μ=0.5,g=10m/s2,sin37°=0.6,cos37°=0.8.求:
(1)导体棒通过磁场过程中产生的焦耳热;
(2)导体棒从进入磁场到达上边界所用的时间和回路中产生的感应电流的有效值;
(3)微观上导体中的电子克服因碰撞产生的阻力做功,宏观上表现为产生焦耳热.试从微观角度推导:
当棒运动到磁场中某一位置时(感应电流为I),其电阻的发热功率为P热=I2r(推导过程用字母表示)
北京市丰台区2018届高三第二次模拟考试理科综合物理试题参考答案
1.D
【解析】花粉颗粒越大,表面积越大,同一时刻撞击颗粒的液体分子数越多,所受的颗粒所受的冲力越平衡,则布朗运动越不明显,故A错误。
温度越低,液体分子运动越不明显,布朗运动也越不明显,故B错误;布朗运动是指悬浮在液体中的颗粒所做的无规则运动的运动,布朗运动是由于液体分子的无规则运动对固体微粒的碰撞不平衡导致的,它间接反映了液体分子的无规则运动,故C错误,D正确,故选D.
【点睛】布朗运动是指悬浮在液体中的颗粒所做的无规则运动的运动,布朗运动是由于液体分子的无规则运动对固体微粒的碰撞不平衡导致的,它间接反映了液体分子的无规则运动.当温度一定时,颗粒越小,布朗运动越明显;当颗粒大小一定时,温度越高,布朗运动越明显.
2.B
【解析】白光经过三棱镜后产生色散现象,在光屏由下至上依次为红、橙、黄、绿、蓝、靛、紫。
紫光的折射角最大,其折射率最大,红光通过棱镜的偏转角最小,其折射率最小,故A错误;紫光比绿光的频率更大,根据,可知紫光光子比绿光光子的能量大,故B正确;此现象是因为光在玻璃砖中发生折射形成的,故C错误;因为紫光的折射率最大,根据,可知紫光的全反向临界角最小,故减小太阳光的入射角度,各种色光会在光屏上依次消失,最先消失的是紫光,故D错误;故选B.
【点睛】白光是复色光,经过三棱镜后由于折射率不同,导致偏折程度不同.红光的折射率最小,紫光的折射率最大,全反向临界角最小。
3.A
【解析】由甲图知波长为,由乙图知周期T=4.0s,则波速为,故A正确;质点Q与质点P相差半个波长,故振动方向相反,由乙图可知在t=2.0时质点P沿y轴负方向运动,则质点Q沿y轴正方向运动,故B错误;质点不会随波向前运动,只在平衡位置上下振动,故C错误;由甲图可知振幅A=5cm,从t=2s到t=7s内,经历的时间为,故Q质点通过的路程为S=5A=25cm,故D错误;故选A.
【点睛】由甲图读出波长,由乙图读出周期,根据求出波速度,由乙图分析质点P的振动方向,而质点Q与质点P相差半个波长,由此分析质点P的振动情况。
4.B
【解析】该中子星的卫星它做匀速圆周运动的半径等于中子星的星球半径时,该卫星有最小周期,加速度、角速度和线速度最大,根据万有引力提供向心力得:
,解得:
,将代入解得:
,,,,故ACD错误,B正确,故选B.
【点睛】当该中子星的卫星它做匀速圆周运动的半径等于中子星的星球半径时,该卫星有最小周期,加速度、角速度和线速度最大,根据万有引力提供向心力即可求解相关物理量。
5.C
【解析】图(a)中,线圈在中性面位置,故穿过线圈的磁通量最大,磁通量变化率为0,故A错误;从线圈在中性面位置开始计时的表达式才是,故B错误;当线圈转到图(c)位置时,线圈在中性面位置,故穿过线圈的磁通量最大,产生的感应电流最小为零,电流方向将改变,故C正确;当线圈转到图(d)位置时,磁通量最小,磁通量的变化率最大,故感应电动势最大,ab边感应电流方向为b→a,故D错误;故选C.
【点睛】要解决此题,需要掌握发