五年级上册数学知识点归纳Word下载.docx

上传人:b****4 文档编号:15741527 上传时间:2022-11-15 格式:DOCX 页数:19 大小:488KB
下载 相关 举报
五年级上册数学知识点归纳Word下载.docx_第1页
第1页 / 共19页
五年级上册数学知识点归纳Word下载.docx_第2页
第2页 / 共19页
五年级上册数学知识点归纳Word下载.docx_第3页
第3页 / 共19页
五年级上册数学知识点归纳Word下载.docx_第4页
第4页 / 共19页
五年级上册数学知识点归纳Word下载.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

五年级上册数学知识点归纳Word下载.docx

《五年级上册数学知识点归纳Word下载.docx》由会员分享,可在线阅读,更多相关《五年级上册数学知识点归纳Word下载.docx(19页珍藏版)》请在冰豆网上搜索。

五年级上册数学知识点归纳Word下载.docx

2.205≈2.21(保留两位小数)

3、如果求得的近似数要保留数位的数字是9而后一位数字又大于5需要进1,这时就要依次进一用0占位。

如6.597保留两位小数为6.60。

特别注意:

在保留整数、(一位、两位、三位)小数、省略(亿·

·

万·

十分位、百分位·

)后面的尾数、精确到(亿·

)这类题目,都可以用划圆圈的方法来完成。

七、乘除法运算定律

1、乘法交换律:

两个数相乘,交换两个因数的位置,积不变。

用字母表示为:

b=b×

a例如:

85×

18=18×

8523×

88=88×

23

2、乘法结合律:

三个数相乘,先乘前两个数,或者先乘后两个数,积不变。

用字母表示为:

(a×

b)×

c=a×

(b×

c)

注意:

乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。

例如:

25×

4=100;

250×

4=1000;

125×

8=1000;

125×

80=10000

3、乘法分配律:

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。

用字母表示:

(a+b)×

c+b×

c,或者是:

c=(a+b)×

c

简便计算中乘法分配律及其逆运算是运用最广泛的一个,一定要掌握它和它的逆运算。

4、个数相乘,如果有接近整十、整百、整千……的数,可以将其转化成整十、整百、整千数……加(或减)一个数的形式,再用乘法分配律进行计算。

八、整数乘法运算定律在小数乘法中的应用:

1.整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

2.计算连乘时可应用乘法交换律、结合律将乘积是整数的两个数先乘,再乘另一个数;

计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。

3.对于不符合运算定律的算式,可通过变形再进行应用。

错点警示:

小数乘整数的积的末尾有0时,一定要

先点积中的小数点,再去掉积中小数部分

末尾的0。

规避策略:

牢记计算方法和解题过程,先按整数乘

法计算,再数小数位数,确定小数点的位

置,最后去掉小数部分末尾的0。

 

第二单元《位置》

一、对行和列的认识。

1、横排叫做行,竖排叫做列。

确定第几列一般是从左往右数,确定第几行一般是从前往后数。

二、对数列的认识和表示方法。

1、用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。

2、用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。

3、写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开。

写作:

(列,行)。

4、数对的读法:

(2,3)可以直接读(2,3),也可以读作数对(2,3)。

5、一组数对只能表示一个位置。

6、表示同一列物体位置的数对,它们的第一个数相同;

表示同一行物体位置的数对,它们的第二个数相同。

8、表示位置有绝招,一组数据把它标。

竖线为列横为行,列先行后不可调。

一列一行一括号,逗号分隔标明了。

三、物体移动引起数对的变化。

1、在方格纸或田字格上,物体左、右移动(向左或向右平移),行数不变,列数等于减去或加上平移的格数;

物体上、下移动(向上或向下平移),列数不变,行数等于加上或减去平移的格数。

第三单元《小数除法》

知识框架:

1、小数除以整数*计算法则:

按整数除法的法则进行计算,商的小数点要和被

2、一个数除以小数除数的小数点对齐。

如果有余数,要添0再除。

(整数部分不够除,商0,点上小数点。

(一位一位落数,不够商1就用0占位。

3、商的近似数。

四舍五入法(结合生活实际,具体问题具体分析)

有限小数如:

3.1265890.156********47

4、循环小数:

小数无限不循环小数

无限小数

无限循环小数

5、用计算器探索规律

6、解决问题

小数除法

一、小数除以整数

1、小数除法的意义:

已知两个因数的(积)与其中的一个因数,求另一个因数的运算。

如:

0.6÷

0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

2、小数除以整数的计算方法:

(1)小数除以整数,先安按整数除法的方法计算,商的小数点要和被除数的小数点对齐。

3、除到被除数的末尾有余数的小数除法:

(1)计算除数是整数的小数除法时,除到被除数的末尾仍有余数,根据小数的性质(小数的末尾添上0或去掉0,小数的大小不变)在商的个位后点上小数点,在余数后面添0继续除。

(2)小数除以整数如果整数部分不够除,商写上0,点上小数点再除。

0在个位起占位作用。

二、一个数除以小数

1、除数是小数的除法的计算方法:

(1)、先移动除数的小数点,使它变成整数。

(2)除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足。

(3)然后按照除数是整数的小数除法进行计算。

易错点:

如果被除数的位数不够,在被除数的末尾用0补足。

2、除法中的变化规律:

(1)商不变性质:

被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

(2)除数不变,被除数扩大,商随着扩大。

(3)被除数不变,除数缩小,商扩大。

3、商和被除数的大小关系:

被除数除以一个小于1的除数时,商会比被除数大;

被除数除以一个大于1的除数时,商会比被除数小。

三、商的近似数

1、准确数与近似数

准确数:

在日常生活和生产实际所遇到的数中,有时可以得到完全准确的数,他们精确,没有误差。

(1)班有学生46人,这里的46是准确数。

近似数:

由于实际中常常不需要用精确的数描述一个量,或不可能得到精确的数。

中国约有13亿人,这里的13就是近似数。

2、有效数字:

一个近似数精确到哪一位,从左边第一个不是零的数算起,到这一位数字上,所有的数字,都叫做这个数的有效数字。

例如:

0.6166≈0.62,有两个有效数字:

6、2。

3、求商的近似数时,一般先除到比需要保留的小数位数多一位,在按照“四舍五入”法取商的近似值。

求近似数时,其中小数末尾的“0”不能去掉。

4、循环小数&

用计算器探索规律

1、循环小数:

一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环小数必须满足两个条件 

2、循环节:

一个循环小数的小数部分,依次不断重复出现的数字。

如6.3232……的循环节是32。

3、循环小数的表示方法:

写循环小数时,可以只写第一个循环节。

并在这个循环节的首位和末位数字上面各记一个圆点。

5.33333…写作:

6.965986598…写作:

3、小数:

小数部分的位数是有限的小数,叫做有限小数。

小数部分的位数是无限的小数,叫做无限小数。

5、解决问题

先审题,要明白题目中已知什么?

要求什么?

再根据其关系式进行列出算式,(列算式时多问自己为什么要这样列式)接着进行计算,在计算的过程中,要细心、细心、再细心,最后根据实际情况决定用“进一法”还是“去尾法”。

第四单元《可能性》

一、事件发生的可能性有三种情况:

可能、不可能和一定。

其中,在一定的条件下,一些事情的结果是可以预知或确定的,就可以用“一定”或“不可能”来描述,表示确定现象。

而在一定的条件下,一些事情的结果是不可以预知的或不可以确定的,这时就可以用“可能”来描述,表示不确定现象。

二、事件发生的可能性大小:

当事件的可能性的大小与物体数量相关时,在总数或总体中物体数量越多,出现对应结果的可能性越大;

物体数量越少,出现对应结果的可能性就越小。

三、根据事件发生的可能性大小判断物体数量的多少:

当可能性的大小与物体数量相关时,某事件发生的可能性越大,则该事件对应的物体在总数中所占数量就越多;

可能性越小,所占数量就越少。

考点:

(1)、可能性的大小可以用分数或小数来表示。

从标有1,2,3,4的四张卡片中任抽一张,抽到卡片“1”的可能性是多少?

(2)、设计公平的游戏规则。

指针停在斜线、白、黑三种区域的可能性是多少?

(3)、数的排列规律。

桌子有三张卡片,分别写着7、8、9。

如果摆出的三位数是单数小强赢,如果提出的三位数是双数,小丽赢,想一想,谁赢的可能性大些?

这样公平吗?

第五单元《简易方程》

一、对于乘号的书写形式:

(1)在含有字母的式子里,字母中间的乘号可以记作“·

”,也可以省略不写。

(2)数字和字母相乘,省略乘号时要把数字写在前面。

(如b×

4写作4b 

(3)数与数之间的乘号不能省略。

a可以写作:

(或

) 

读作:

a的平方或a的2次方,表示两个a相乘。

2a表示:

a+a 

二、等式的性质:

(1)在等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

(2)在方程左右两边同时加、减、乘、除一个不等于0的数,左右两边仍然相等。

三、方程和等式的关系:

含有未知数的等式叫做方程,(所有的方程都是等式,但等式不一定都是方程。

2+3=5是等式,但不是方程。

注意:

X=3此类也是方程。

四、方程的解:

使方程左右两边相等的未知数的值,叫做方程的解。

五、解方程:

求方程的解的过程叫做解方程。

解方程原理:

天平平衡。

六、解方程需要注意什么?

(每天坚持练习) 

(1)一定要写‘解’字。

(2)等号要对齐,同时运算前左右两边要照抄,解的未知数写在左边。

(3)两边乘、除相同数的时候,这个数一定不能为0。

七、10个数量关系式:

加法:

和=加数+加数 

一个加数=和-另一个加数 

减法:

差=被减数-减数 

 

被减数=差+减数 

减数=被减数-差 

乘法:

积=因数×

因数 

一个因数=积÷

另一个因数 

除法:

商=被除数÷

除数 

被除数=商×

除数=被除数÷

商 

八、用S表示面积,用C表示周长。

(1) 

如果用a表示正方形的边长 

, 

那么 

这个正方形的周长:

=a·

4=4a(省略乘号时,一般把数写在字母前面)

这个正方形的面积:

a=

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1