一年级奥数竞赛试题Word下载.docx
《一年级奥数竞赛试题Word下载.docx》由会员分享,可在线阅读,更多相关《一年级奥数竞赛试题Word下载.docx(9页珍藏版)》请在冰豆网上搜索。
三、画出盒子里串的珠子;
(共18分,每空9分)
(1)
(2)
四、想一想,填一填;
(共10分,每空2分)
(1)
(2)
五、数数下面图形各有多少个小方块?
(共12分,每空2分)
(1)
( )个 ( )个 ( )个
( )个 ( )个 ( )个
六、哪只兔子最先吃到萝卜?
(共12分)
答:
_______只兔子先吃到。
七、把下列算式按得数由小到大排列起来;
10-7, 12-10, 3+5, 4+0, 9+9
_______________________________________________________
八、填上数,使横行、竖行的三个数相加都得10;
(共18分,每空2分)
九、一只钟的对面有一面镜子,镜子里的钟表如下图,那么钟表上正确的时间是几时?
答:
钟表上现在时间是___________。
一年级奥数教材
例题1小动物们举行动物运动会,在长跑比赛中有4只动物跑在小松鼠的前面,有3只动物跑在小松鼠的后面,一共有几只动物参加长跑比赛?
解答:
这道题要明确问题的关键,我们可以把跑步的所有小动物看成一个队列,小松鼠前面有4只小动物,后面有3只小动物,在这个队列中,就是没有数松鼠自己,所以求这队的总数还要把小松鼠加上。
4+3+1=8(只),一共有8只动物参加长跑比赛。
例题2 一只蜗牛沿着10米深的井往上爬,白天向上爬5米,到夜里往下滑了3米,那么蜗牛什么时候可以爬出井口?
小蜗牛白天爬上了5米,晚上又掉下了3米,那实际上每天只能爬上去2米,爬前6米小蜗牛用了3天,还剩4米,因此第4天就可以爬出去了。
例题3
小亮走进教室,看见教室里只有8名同学,那么现在教室里一共有几名同学?
粗心的小朋友一看题目就认为是8名同学,但这个答案是错的,认真审题后可以发现,题中已经指出"
小亮走进教室"
,因此现在同学的人数应该包括小亮,所以一共有9名同学。
例题4从前,有一个商人特别精明。
有一次,他在马市上用10两银子买了一匹马,一转手以20两银子的价钱卖了出去;
然后,他再用30两把它买进来,最后以40两的价钱卖出。
在这次马的交易中,他赚了多少钱?
这次买卖可分为两次来看。
第一次买进10两银子,卖出20两银子,所以赚了10两银子。
第二次买进30两银子,卖出40两银子,因此也赚了10两银子。
在马的交易中,商人共赚了20两银子。
例题5
三
(1)班有学生37人,三(4)班有学生43人,要使两班学生的人数相等,必须从三(4)班调多少人到三
(1)班?
这是典型的移多补少问题,要小朋友注意的是,不能把多出来的人都分出去,只能分多出来的一半人数,这样才能使两个班级人数相等。
多:
43-37=6(人)分:
6-3=3(人)
例题6小丁丁今年6岁,爷爷说:
"
你长到10岁的时候,爷爷正好是70岁,"
问爷爷今年几岁?
根据爷爷的话,爷爷比小丁丁大70-10=60岁,那么今年爷爷也是比小丁丁大60岁,小丁丁今年6岁,所以爷爷今年就是6+60=66岁。
例题7妈妈买来了40个草莓,亮亮第一天吃了一些,第二天又吃了一些,这是还剩下12个草莓,亮亮两天一共吃了多少个草莓?
40-12=28(个)亮亮两天一共吃了28个草莓。
用草莓的总数减去剩下草莓的个数,就等于两天一共吃掉草莓的个数。
例题8早上上学,小萍走进教室,看见教室里已经来了8名同学,过了一会儿,又来了5名同学,现在教室里一共有几名同学呢?
8+5+1=14(人)粗心的同学一看题目就回答教室里现在的同学是8+5=13名,但仔细想想题目中说"
小萍走进教室,看见教室里已经来了8名同学"
,并没有数自己。
所以还要算上小萍自己才是现在教室里一共的同学人数。
例题91,2,5,6,9,(
),(
),14
通过观察我们发现:
1+1=2,2+3=5,5+1=6,6+3=9……后一个数在前一个数的基础上分别+1,+3,+1,+3,+1,+3……所以后面的数应该是9+1=10,10+3=13,空白处应该填10,13。
例题10小芳用了5元钱后现在有6元钱,小芳原来有多少元?
5+6=11(元)
因为原来有的钱数-用了的钱数=剩下的钱数,所以用了的钱数+剩下的钱数=原来有的钱数
【小结】在解还原问题的题目时一般采用倒推法,这种解题方法一般是从结果出发,利用已知条件一步一步倒着分析,推理直到得出答案
例题11
姐姐今年8岁,爸爸今年32岁,四年后爸爸比姐姐大多少岁?
32-8=24(岁)
因为爸爸和姐姐的年龄差不变,所以四年后的年龄差等于今年的年龄差。
【小结】解这类题的关键是理解两人的年龄差是固定不变的,即两人的年龄是同时增长的。
例题12计算:
21+22+23+24+25+26+27+28+29的和等于多少?
21+22+23+24+25+26+27+28+29
=21+29+22+28+23+27+24+26+25
=50+50+50+50+25
=225
【小结】对于这类题目要注意观察数字的规律和符号的规律
例题13
小明在操场上排队做操,老师数了数人数发现在小明的前面有6人,后面有8人,问这队共有多少人?
由图可知:
总人数是6+8+1=15
【小结】对于这类题目可以用以下公式:
总人数=排在前面的人数+排在后面的人数+1
例题14
例题15今天老师带着一年级的小朋友到路边植树。
小朋友们每隔1米种一棵树(马路两头都种了树),最后发现一共种了11棵,请问这条马路有多少米?
画示意图如下:
由图可见,这段马路的11棵树之间有10个"
空"
,也就是10个间隔。
每个间隔长1米,10个间隔长10米。
也就是说这段马路长10米。
像这类问题一般叫做"
植树问题。
【小结】植树问题通用公式:
距离=间隔×
段数
需要注意的是植树的方式,不同方式之间的主要区别在于棵数与段数的关系。
不封闭体系,两端种树:
棵数=段数+1
一端种树:
棵数=段数
两端都不种:
棵数=段数-1
封闭体系:
棵数=段数
例题16把1,2,3,5,7,8填入下面的圈圈中,使得每个三角形上的三个数相加的和相等,要怎么填呢?
圈圈中填的是1~9,1+2+3+4+5+6+7+8+9=45,所以旁边三个三角形每个三角形上的和是15,中间的三角形和也是15,中间剩下的那个填5,其余的慢慢填就好了。
同学们也可以通过尝试来得到结果的。
图中1和9,3和8,2和7的位置可以互换。
例题17糖果
判断:
小易的糖果比薇薇多,薇薇的糖果比欣欣少,那么下面哪个说法是对的?
(1)小易的糖果比欣欣多
(2)小易的糖果比欣欣少
根据题目我们无法知道小易和欣欣谁的糖果多,所以两个判断都是错的。
例题18计算
算一算,下面的式子答案是多少?
1、11+12+14+18+26+29=
2、(3+5+7+9+11)-(2+4+6+8+10)=
例题19
有一根木头,每1米锯一下,每锯一下需要1分钟,总共6分钟锯完,那么这根木头有多长呢?
(假设木头的长度为整数)
每锯一下需要1分钟,共锯了6分钟,所以锯了6下。
锯6下共有7段(这个同学们可以通过实物模拟,了解为什么是7段),每段1米,所以长7米。
例题20硬币
有7枚硬币,分给2个人,要求每个人得到的硬币数都是奇数,能做到么?
如果分给3个人,要求每个人得到的硬币数都是奇数,能做到么?
7是一个奇数,两个奇数相加一定是一个偶数,所以把7个硬币分给两个人,每个人所得硬币数都是奇数是不可能的。
分给3个人的话,可以;
7可以拆成一个奇数加上一个偶数,而这个偶数可以拆成两个奇数相加,所以三个奇数相加可以为7;
比如1,1,5或1,3,3。