多维标度法汇报学习PPT资料.ppt
《多维标度法汇报学习PPT资料.ppt》由会员分享,可在线阅读,更多相关《多维标度法汇报学习PPT资料.ppt(38页珍藏版)》请在冰豆网上搜索。
Torgerson拓展了Richardson及Klingberg等人在三、四十年代的研究,具有突破性地提出了多维标度法,后经Shepard和Kruskal等人进一步加以发展完善。
多维标度法现在已经成为一种广泛用于心理学、市场调查、社会学、物理学、政治科学及生物学等领域的数据分析方法。
多维标度法解决的问题是:
当n个对象(object)中各对对象之间的相似性(或距离)给定时,确定这些对象在低维空间中的表示(感知图PerceptualMapping),并使其尽可能与原先的相似性(或距离)“大体匹配”,使得由降维所引起的任何变形达到最小。
多维空间中排列的每一个点代表一个对象,因此点间的距离与对象间的相似性高度相关。
也就是说,两个相似的对象由多维空间中两个距离相近的点表示,而两个不相似的对象则由多维空间两个距离较远的点表示。
多维空间通常为二维或三维的欧氏空间,但也可以是非欧氏三维以上空间。
多维标度法内容丰富、方法较多。
按相似性(距离)数据测量尺度的不同MDS可分为:
度量MDS和非度量MDS。
当利用原始相似性(距离)的实际数值为间隔尺度和比率尺度时称为度量MDS(metricMDS),当利用原始相似性(距离)的等级顺序(即有序尺度)而非实际数值时称为非度量MDS(nonmetricMDS)。
按相似性(距离)矩阵的个数和MDS模型的性质MDS可分为:
古典多维标度CMDS(一个矩阵,无权重模型)、重复多维标度ReplicatedMDS(几个矩阵,无权重模型)、权重多维标度WMDS(几个矩阵,权重模型)。
这里仅介绍常用的古典多维标度法和权重多维标度法。
第二节古典多维标度(CLASSICALMDS)一一相似与距离的概念相似与距离的概念二二古典多维标度分析的思想及方法古典多维标度分析的思想及方法三三度量度量MDS的古典解的古典解四四非度量非度量MDS的古典解的古典解(nonmetricMDS)首先我们提出这样一个问题,表10.1是美国十城市之间的飞行距离,我们如何在平面坐标上据此标出这10城市之间的相对位置,使之尽可能接近表中的距离数据呢?
表表10.1美国美国10城市间的飞行距离城市间的飞行距离一、相似与距离的概念在解决上述问题之前,我们首先明确与多维标度法相关的数据概念。
1相似数据与不相似数据相似数据:
如果用较大的数据表示非常相似,用较小的数据表示非常不相似,则数据为相似数据。
如用10表示两种饮料非常相似,用1表示两种饮料非常不相似。
不相似数据:
如果用较大的数值表示非常不相似,较小的数值表示非常相似,则数据为不相似数据,也称距离数据。
如用10表示两种饮料非常不相似,用1表示两种饮料非常相似。
2距离阵定义1.1一个nn阶的矩阵D=(dij)nn,如果满足条件:
在进行多维标度分析时,如果数据是多个分析变量的原始数据,则要根据聚类分析中介绍的方法,计算分析对象间的相似测度;
如果数据不是广义距离阵,要通过一定的方法将其转换成广义距离阵才能进行多维标度分析。
二、古典多维标度分析的思想及方法这里需要特别注意,并非所有的距离阵都存在一个r维的欧氏空间和n个点,使得n个点之间的距离等于D。
因而,并不是所有的距离阵都是欧氏距离阵,还存在非欧氏距离阵。
当距离阵为欧氏时,可求得一个D的构图X,当距离阵不是欧氏时,只能求得D的拟合构图。
在实际应用中,即使D为欧氏,一般也只求r=2或3的低维拟合构图。
值得注意的是,由于多维标度法求解的n个点仅仅要求它们的相对欧氏距离与D相近,也就是说,只与相对位置相近而与绝对位置无关,根据欧氏距离在正交变换和平移变换下的不变性,显然所求得解并不唯一。
三、度量MDS的古典解(4)根据(10.7)式计算,得到r维拟合构图(简称古典解)。
这里需要注意,如果i中有负值,表明D是非欧氏型的。
(一)已知距离矩阵的CMDS计算以前述美国10城市间的飞行距离数据来说明古典度量多维标度法的计算过程。
表10.1美国10城市间的飞行距离为比率测度。
数值越大表明距离越远,数值越小表明距离越短,符合广义距离阵的定义,又只涉及一个距离阵,因此为度量CMDS。
根据上述度量古典CMDS的计算方法,首先可求得内积矩阵,结果见表10.2。
表表10.2美国美国10城市内城市内积矩矩阵10个城市的坐标分别为:
(-718.759,142.9942),(-382.056,-340.84),(481.602,-25.285),(-161.466,572.77),(1203.738,390.100),(-1133.53,581.907),(1072.24,-519.024),(1420.603,112.589),(1341.723,-579.739),(-979.622,-335.473)。
计算结果表明,较大的特征值有两个,说明在二维平面上表示10城市间的相对位置是合适的。
由于有特征值小于零,表明距离阵不是欧氏型,其结果为拟合构图。
在此,城市是“对象”,飞行里程是“相似性”。
图10.1给出了MDS反映美国10座城市相对位置的感知图。
图中的10个点,每个点代表一个城市,相近的点代表飞行距离短的城市,相距较远的点代表飞行距离远的城市。
图图10.110城市坐标感知图城市坐标感知图相关系数的值越大,表示课程越相似,相关系数值越小,表明课程越不相似,显而易见,相关系数矩阵为相似系数矩阵,记为C。
表表10.36门课程相关系数阵门课程相关系数阵根据变换(10.8)式可得到距离阵D,见表10.4。
在此基础上,根据(10.5)式得到内积矩阵B,具体结果见表10.5。
表表10.4距离距离阵D表表10.5内内积矩矩阵从结果知距离阵D不是欧氏型,我们取r=2,由(10.7)式求得D的古典解,结果如下:
图10.2大体反映了这六门课程的基本结构,从图中可以直观的看出,算术、代数、几何较为相近,英语和盖尔语较为相近,而历史课程与其他课程的差异性较大。
图图10.2六门课程的古典解感知图六门课程的古典解感知图四、非度量MDS的古典解(NONMETRICMDS)在实际问题中,我们涉及更多的是不易量化的相似性测度,如两种颜色的相似性,虽然我们可以用1表示颜色非常相似,10表示颜色非常不相似,但是这里的数字只表示颜色之间的相似或不相似程度,并不表示实际的数值大小,因而是定序尺度,这时是由两两颜色间的不相似数据ij形成“距离”矩阵。
对于非度量的不相似性矩阵,我们如何进行多维标度分析呢?
假定有一个n个对象的不相似矩阵(ij)nn,要寻找n个对象的一个r维拟合构造点X。
下面介绍Kruskal的非度量MDS分析方法。
为了寻找一个较好的拟合构造点,我们可以从某一个拟合构造点开始,即先将n个对象随意放置在r维空间,形成一个感知图,用Xi=(Xi1,Xi2,Xir)表示i对象在r维空间的坐标,对象i与j在r维空间的距离为:
也就是说,S应力是将(10.9)式中的dij和用它们的平方代表后所得到的量度。
S应力的值介于0和1之间。
典型的情况是:
此值小于0.1意味着感知图是n个对象的一个好的几何表示。
在非度量MDS分析过程中,另一个需要解决的问题是感知图空间维数r的确定。
我们可以制作应力-r图确定感知图的维数r。
从前述可知,对每一个r,可以找到使应力达到最小的点结构。
随着r的增加,最小应力将在运算误差的范围内逐渐下降,且当r=n-1时达到零。
从r1开始,可将应力S(r)对r作图。
这些点随r的增加而呈下降排列。
若找到一个r,上述下降趋势到这一点开始接近水平状态,即形成一个“肘”形曲线,这个r便是“最佳”维数。
非度量MDS虽然是基于非度量尺度数据的分析方法,但是,当定量尺度的距离阵中的数据不可靠,而距离大小的顺序可靠时,采用非度量MDS比度量MDS得到的结果更接近与实际。
第三节权重多维标度(WMDS)以上我们的讨论都是以单个“距离”阵数据出发进行的,但在实践中,往往需要确定多个距离阵数据的感知图,比如由10个人分别对5种饮料进行两两相似评测,结果就会得到10个相似性矩阵,那么,我们如何根据这10个人的评测结构得出5种饮料的相似性感知图呢?
显然,按照古典多维的方法,我们只能是每一个相似性矩阵确定一个感知图,10个人分别确定10个感知图。
但是,往往我们想要得到的是这10个人共同的一个感知图而非10个。
这一节将介绍由Carroll和Chang提出的解决这类问题的多维标度方法权重多维标度法(WMDS)。
基础权重多维标度法也称权重个体差异欧氏距离模型。