《组合》课件张人教版选修PPT文件格式下载.ppt

上传人:b****3 文档编号:15610183 上传时间:2022-11-07 格式:PPT 页数:53 大小:800.50KB
下载 相关 举报
《组合》课件张人教版选修PPT文件格式下载.ppt_第1页
第1页 / 共53页
《组合》课件张人教版选修PPT文件格式下载.ppt_第2页
第2页 / 共53页
《组合》课件张人教版选修PPT文件格式下载.ppt_第3页
第3页 / 共53页
《组合》课件张人教版选修PPT文件格式下载.ppt_第4页
第4页 / 共53页
《组合》课件张人教版选修PPT文件格式下载.ppt_第5页
第5页 / 共53页
点击查看更多>>
下载资源
资源描述

《组合》课件张人教版选修PPT文件格式下载.ppt

《《组合》课件张人教版选修PPT文件格式下载.ppt》由会员分享,可在线阅读,更多相关《《组合》课件张人教版选修PPT文件格式下载.ppt(53页珍藏版)》请在冰豆网上搜索。

《组合》课件张人教版选修PPT文件格式下载.ppt

甲、乙;

甲、丙;

乙、丙甲、乙;

乙、丙33情境创设情境创设从已知的从已知的3个个不同元素中每不同元素中每次取出次取出2个元个元素素,并成一组并成一组问题二问题二从已知的从已知的3个不同元素个不同元素中每次取出中每次取出2个元素个元素,按照按照一定的顺序一定的顺序排成一列排成一列.问题一问题一排列排列组合组合有有顺顺序序无无顺顺序序一般地,从一般地,从n个不同元素中取出个不同元素中取出m(mn)个元素个元素并成一组并成一组,叫做从,叫做从n个不同元素中取出个不同元素中取出m个元素的一个个元素的一个组合组合.排列与组合的排列与组合的概念有什么共概念有什么共同点与不同点同点与不同点?

概念讲解概念讲解组合定义组合定义:

?

组合定义组合定义:

一般地,从一般地,从n个不同元素中取出个不同元素中取出m(mn)个元素个元素并成一组并成一组,叫做从,叫做从n个不同元素中取出个不同元素中取出m个元个元素的一个素的一个组合组合排列定义排列定义:

一般地,从一般地,从n个不同元素中取出个不同元素中取出m(mn)个元素,个元素,按照一定的顺序排成一列按照一定的顺序排成一列,叫做从,叫做从n个不个不同元素中取出同元素中取出m个元素的一个个元素的一个排列排列.共同点共同点:

都要都要“从从n个不同元素中任取个不同元素中任取m个元素个元素”不同点不同点:

排列排列与元素的顺序有关,与元素的顺序有关,而组合而组合则与元素的顺序无关则与元素的顺序无关.概念讲解概念讲解思考一思考一:

aB与与Ba是相同的排列是相同的排列还还是相同的组合是相同的组合?

为什么为什么?

思考二思考二:

两个相同的排列有什么特点两个相同的排列有什么特点?

两个相同两个相同的组合呢的组合呢?

)元素相同;

)元素排列顺序相同)元素排列顺序相同.元素相同元素相同概念理解概念理解构造排列分成两步完成,先取后排;

构造排列分成两步完成,先取后排;

而构造组合就是其中一个步骤而构造组合就是其中一个步骤.思考三思考三:

组合与排列有联系吗组合与排列有联系吗?

判断下列问题是组合问题还是排列问题判断下列问题是组合问题还是排列问题?

(1)设集合设集合A=a,b,c,d,e,则集合,则集合A的含有的含有3个元素的个元素的子集有多少个子集有多少个?

(2)某铁路线上有某铁路线上有5个车站,则这条铁路线上共需准备个车站,则这条铁路线上共需准备多少种车票多少种车票?

有多少种不同的火车票价?

组合问题组合问题排列问题排列问题(3)10人聚会,见面后每两人之间要握手相互问候人聚会,见面后每两人之间要握手相互问候,共共需握手多少次需握手多少次?

组合问题组合问题组合问题组合问题组合是选择的结果,排列组合是选择的结果,排列是选择后再排序的结果是选择后再排序的结果.1.从从a,b,c三个不同的元素中取出两个元素的所三个不同的元素中取出两个元素的所有组合分别是有组合分别是:

ab,ac,bc2.已知已知4个元素个元素a,b,c,d,写出每次取出两个元写出每次取出两个元素的所有组合素的所有组合.abcdbcdcdab,ac,ad,bc,bd,cd(3(3个个)(6(6个个)概念理解概念理解从从n个不同元素中取出个不同元素中取出m(mn)个元素的所)个元素的所有组合的个数,叫做从有组合的个数,叫做从n个不同元素中取出个不同元素中取出m个元素的个元素的组合数组合数,用符号,用符号表示表示.如如:

从从a,b,c三个不同的元素中取出两个元素三个不同的元素中取出两个元素的所有组合个数是的所有组合个数是:

如如:

已知已知4个元素个元素a、b、c、d,写出每次取出写出每次取出两个元素的所有组合个数是:

两个元素的所有组合个数是:

概念讲解概念讲解组合数组合数注意:

注意:

是一个数,应该把它与是一个数,应该把它与“组合组合”区别开来区别开来1.写出从写出从a,b,c,d四个元素中任取三个元素的所有四个元素中任取三个元素的所有组合组合abc,abd,acd,bcd.bcddcbacd练一练练一练组合组合排列排列abcabdacdbcdabcbaccabacbbcacbaabdbaddabadbbdadbaacdcaddacadccdadcabcdcbddbcbdccdbdcb(三个元素的)(三个元素的)11个组合,对应着个组合,对应着66个排列个排列你发现了你发现了什么什么?

对于对于,我们可以按照以下步骤进行,我们可以按照以下步骤进行组合数公式组合数公式排列与组合是有区别的,但它们又有联系排列与组合是有区别的,但它们又有联系一般地,求从一般地,求从n个不同元素中取出个不同元素中取出m个元素的个元素的排列数,可以分为以下排列数,可以分为以下2步:

步:

第第11步,先求出从这步,先求出从这n个不同元素中取出个不同元素中取出m个个元素的组合数元素的组合数第第2步,求每一个组合中步,求每一个组合中m个元素的全排列数个元素的全排列数根据分步计数原理,得到:

根据分步计数原理,得到:

因此:

这里这里m,n是自然数,且是自然数,且mn,这个公式叫做,这个公式叫做组合组合组合组合数公式数公式数公式数公式概念讲解概念讲解组合数公式组合数公式:

从从n个不同元中取出个不同元中取出m个元素的排列数个元素的排列数例例11、计算:

、计算:

例例2.2.甲、乙、丙、丁甲、乙、丙、丁44支足球队举行单循环赛,支足球队举行单循环赛,(11)列出所有各场比赛的双方;

)列出所有各场比赛的双方;

(22)列出所有冠亚军的可能情况)列出所有冠亚军的可能情况.(22)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁乙甲乙甲、丙甲丙甲、丁甲丁甲、丙乙丙乙、丁乙丁乙、丁丙丁丙(11)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁甲乙、甲丙、甲丁、乙丙、乙丁、丙丁解:

解:

例题分析例题分析(3)已知:

)已知:

,求,求n的值的值3535

(2)

(2)120120例31.理解组合的定义,区别排列与组合之间的关系.思悟小结

(2)同是从)同是从n个元素中取个元素中取m个元素,但是组合个元素,但是组合一旦取完就结束,而排列还要继续进行排序一旦取完就结束,而排列还要继续进行排序

(1)有序与无序的区别)有序与无序的区别2.2.理解组合数的的定义与公式理解组合数的的定义与公式(11)(22)3.103.10名学生,名学生,77人扫地,人扫地,33人推车,那么不同人推车,那么不同的分工方的分工方法有法有种;

种;

组合应用组合应用【练习练习】1.用用m、n表示表示2.2.从从88名乒乓球选手中选出名乒乓球选手中选出33名打团体赛,共名打团体赛,共有有种种不同的选法;

如果这三个选手又按照不同顺序安排,不同的选法;

如果这三个选手又按照不同顺序安排,有有种方法种方法.例例1.1.在产品检验中,常从产品中抽出一部分在产品检验中,常从产品中抽出一部分进行检查进行检查.现有现有100100件产品,其中件产品,其中33件次品,件次品,9797件件正品正品.要抽出要抽出55件件进行检查,根据下列各种要求,进行检查,根据下列各种要求,各有多少种不同的抽法?

各有多少种不同的抽法?

(1)无任何限制条件;

无任何限制条件;

(2)全是正品;

全是正品;

(3)只有只有2件正品;

件正品;

(4)至少有至少有1件次品;

件次品;

(5)至多有至多有2件次品;

(6)次品最多次品最多.解答:

解答:

(11)(22)(33)(44),或,或(55)(66)1.1.有有1010道试题,从中选答道试题,从中选答88道,共有道,共有种选法、种选法、又若其中又若其中66道必答,共有道必答,共有不同的种选法不同的种选法.2.2.某班有某班有5454位同学,正、副班长各位同学,正、副班长各11名,现选派名,现选派66名同学名同学参加某科课外小组,在下列各种情况中参加某科课外小组,在下列各种情况中,各有多少种,各有多少种不同的选法?

不同的选法?

(11)无任何限制条件;

)无任何限制条件;

(22)正、副班长必须入选;

)正、副班长必须入选;

(33)正、副班长只有一人入选;

)正、副班长只有一人入选;

(44)正、副班长都不入选;

)正、副班长都不入选;

(55)正、副班长至少有一人入选;

)正、副班长至少有一人入选;

(55)正、副班长至多有一人入选;

)正、副班长至多有一人入选;

练习:

小结:

至多至少问题常用分类的或排除法小结:

至多至少问题常用分类的或排除法.例例2从数字从数字1,2,5,7中任选两个中任选两个练习练习有不同的英文书有不同的英文书5本本,不同的中文书不同的中文书7本本,从中选出两本书从中选出两本书.

(1)若其中一本为中文书若其中一本为中文书,一本为英文书一本为英文书.问共有多少种选法问共有多少种选法?

(1)可以得到多少个不同的和可以得到多少个不同的和?

(2)可以得到多少个不同的差可以得到多少个不同的差?

(2)若不限条件若不限条件,问共有多少种选法问共有多少种选法?

6个12个35种66种例例44有有1212名划船运动员名划船运动员,其中其中33人只会划左舷人只会划左舷,44人只会划右舷人只会划右舷,其它其它55人既会划左舷人既会划左舷,又会划又会划右舷右舷,现要从这现要从这1212名运动员中选出名运动员中选出66人平均分人平均分在左右舷参加划船比赛在左右舷参加划船比赛,有多少种不同的选法有多少种不同的选法?

例例3在在MON的边的边OM上有上有5个异于个异于O点的点点的点,ON上有上有4个异于个异于O点的点点的点,以这十个点以这十个点(含含O)为为顶点顶点,可以得到多少个三角形可以得到多少个三角形?

NOMABCDEFGHI练习练习如图如图,在以在以AB为直径的半圆周上有异于为直径的半圆周上有异于A,B的六个点的六个点C1,C2,C3,C4,C5,C6,AB上有异上有异于于A,B的四个点的四个点D1,D2,D3,D4,问问

(1)以这以这10个点中的个点中的3个点为顶点可作多少个点为顶点可作多少个三角形个三角形?

(2)以图中以图中12个点个点(包括包括A,B)中的四个为顶中的四个为顶点点,可作多少个四边形可作多少个四边形?

ABD1D2D3D4C1C2C3C4C5C6练习(练习(11)求)求的值的值组合数的性质组合数的性质(11)(22)(22)求满足)求满足的的x值值(33)求证:

)求证:

(44)求)求的值的值1617005或25111.排列与组合之间的区别在于有无顺序。

组合中常见的问题有:

选派问题、抽样问题、图形问题、集合问题、分组问题,解答组合问题的关键是用好组合的定义和两个基本原理,只选不排,合理分类、分步.2.理解组合数的性质3.解受条件限制的组合题,通常有直接法(合理分类)和间接法(排除法).思悟小结组合与组合数组合与组合数通过前面的学习,我们已经知道了组合的定义,组合的定义,组合数及其一些性质和组合与排列的关系。

今天我组合数及其一些性质和组合与排列的关系。

今天我们将在此基础上,继续学习它们的一些应用们将在此基础上,继续学习它们的一些应用

(一)组合数的

(一)组合数的公式及其性质:

公式及其性质:

组合数

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1