结构方程模型在实证分析中的应用PPT格式课件下载.ppt
《结构方程模型在实证分析中的应用PPT格式课件下载.ppt》由会员分享,可在线阅读,更多相关《结构方程模型在实证分析中的应用PPT格式课件下载.ppt(24页珍藏版)》请在冰豆网上搜索。
验证性因子分析模型能净化误差,使得潜变量间的关联估计验证性因子分析模型能净化误差,使得潜变量间的关联估计较少地被测量误差污染;
较少地被测量误差污染;
拟合非标准模型的能力,包括灵活处理追踪数据,带自相关拟合非标准模型的能力,包括灵活处理追踪数据,带自相关误差结构的数据库(时间序列分析),和带非正态分布变量误差结构的数据库(时间序列分析),和带非正态分布变量和缺失数据的数据库。
和缺失数据的数据库。
结构方程模型最为显著的两个特点是:
(11)评价多维的和相互关联的关系;
)评价多维的和相互关联的关系;
(22)能够发现这些关系中没有察觉到的概念关系,而且能够)能够发现这些关系中没有察觉到的概念关系,而且能够在评价的过程中解释测量误差。
在评价的过程中解释测量误差。
联系信息技术吸纳能力:
SEMSEM能够反映模型中要素之间的相互影响;
能够反映模型中要素之间的相互影响;
吸纳能力概念作为一个重要的模型要素,难以直接度量,吸纳能力概念作为一个重要的模型要素,难以直接度量,结构方程模型技术能够更为充分地体现其蕴含的要素信息结构方程模型技术能够更为充分地体现其蕴含的要素信息和影响作用。
和影响作用。
SEMSEM的基本思想与方法的基本思想与方法SEMSEM是基于变量的协方差矩阵来分析变量之间关系的一种统是基于变量的协方差矩阵来分析变量之间关系的一种统计方法,实际上是一般线性模型的拓展,包括因素模型与计方法,实际上是一般线性模型的拓展,包括因素模型与结构模型,体现了传统路径分析与因素分析的完美结合。
结构模型,体现了传统路径分析与因素分析的完美结合。
样本协方差矩阵样本协方差矩阵模型模型模型协方差矩阵模型协方差矩阵SEMSEM一般使用最大似然法估计模型一般使用最大似然法估计模型(Maxi-(Maxi-LikeliheodLikeliheod,ML)ML)分析结构方程的路径系数等估计值,因为分析结构方程的路径系数等估计值,因为MLML法使得研究者能法使得研究者能够基于数据分析的结果对模型进行修正。
够基于数据分析的结果对模型进行修正。
可用于可用于SEMSEM分析的软件:
分析的软件:
目前比较流行的是目前比较流行的是LISRELLISREL、AMOSAMOS、EQSEQS和和CALISCALIS等。
等。
SEMSEM术语术语观测变量观测变量可直接测量的变量,通常是指标可直接测量的变量,通常是指标潜变量潜变量潜变量亦称隐变量,是无法直接观测并测量的变量。
潜变量需潜变量亦称隐变量,是无法直接观测并测量的变量。
潜变量需要通过设计若干指标间接加以测量。
要通过设计若干指标间接加以测量。
外生变量外生变量是指那些在模型或系统中,只起解释变量作用的变量。
它们是指那些在模型或系统中,只起解释变量作用的变量。
它们在模型或系统中,只影响其他变量,而不受其他变量的影响。
在路径在模型或系统中,只影响其他变量,而不受其他变量的影响。
在路径图中,只有指向其他变量的箭头,没有箭头指向它的变量均为外生变图中,只有指向其他变量的箭头,没有箭头指向它的变量均为外生变量。
量。
内生变量内生变量是指那些在模型或系统中,受模型或系统中其它变量包括外是指那些在模型或系统中,受模型或系统中其它变量包括外生变量和内生变量影响的变量,即在路径图中,有箭头指向它的变量。
生变量和内生变量影响的变量,即在路径图中,有箭头指向它的变量。
它们也可以影响其它变量。
结构方程模型示意图结构方程模型示意图观测变量通常用长方形或方形表示观测变量通常用长方形或方形表示,外生观测变量用外生观测变量用xx表示,内生观表示,内生观测变量用测变量用yy表示。
表示。
潜变量用椭圆或圆形表示,外生潜变量潜变量用椭圆或圆形表示,外生潜变量通常用通常用表示,内生潜变量表示,内生潜变量通常用通常用表示。
外生观测变量外生观测变量xx的误差;
的误差;
内生观测变量内生观测变量yy的误差。
的误差。
结构方程结构方程结构方程模型通常包括三个矩阵方程式结构方程模型通常包括三个矩阵方程式:
x外生观测变量与外生潜变量直接的关系,是外生观测变量在外生外生观测变量与外生潜变量直接的关系,是外生观测变量在外生潜变量上的因子载荷矩阵;
潜变量上的因子载荷矩阵;
y内生观测变量与内生潜变量之间的关系,是内生观测变量在内生潜内生观测变量与内生潜变量之间的关系,是内生观测变量在内生潜变量上的因子载荷矩阵;
变量上的因子载荷矩阵;
路径系数,表示内生潜变量间的关系;
路径系数,表示外生潜变量对内生潜变量的影响;
结构方程的残差项,反映了结构方程的残差项,反映了”在方程中未能被解释的部分。
在方程中未能被解释的部分。
测量模型测量模型结构模型结构模型结构方程模型的四大步骤结构方程模型的四大步骤构建研究模型,具体包括:
观测变量构建研究模型,具体包括:
观测变量(指标)与潜变量(因子)的关系,各(指标)与潜变量(因子)的关系,各潜变量之间的相互关系等潜变量之间的相互关系等对模型求解,其中主要是模型参数的估对模型求解,其中主要是模型参数的估计,求得参数使模型隐含的协方差距阵计,求得参数使模型隐含的协方差距阵与样本协方差距阵的与样本协方差距阵的“差距差距”最小最小检查检查1)路径系数)路径系数/载荷系数的显著性;
载荷系数的显著性;
2)各参数与预设模型的关系是否合理;
)各参数与预设模型的关系是否合理;
3)各拟合指数是否通过)各拟合指数是否通过模型扩展(使用修正指数)或模型限制模型扩展(使用修正指数)或模型限制(使用临界比率(使用临界比率模型构建模型构建模型拟合模型拟合模型评价模型评价模型修正模型修正一个例子一个例子消费者网上信任模型消费者网上信任模型商家信誉商家信誉网站有用性网站有用性网站安全网站安全信任倾向信任倾向消费者对网上消费者对网上商店的信任商店的信任购买商品购买商品的动机的动机Rep1Rep1Rep2Rep2Rep3Rep3Use1Use1Use2Use2Use3Use3Sec1Sec1Sec2Sec2Sec3Sec3Pro1Pro1Pro2Pro2Pro3Pro3商家信誉商家信誉网站有用性网站有用性网站安全网站安全信任倾向信任倾向消费者对网上消费者对网上商店的信任商店的信任购买商品购买商品的动机的动机Rep1Rep1Rep2Rep2Rep3Rep3Rep1Rep1Rep2Rep2Rep3Rep3一个例子一个例子SEM构建构建数据准备数据准备样本量:
一般认为样本数最少应在样本量:
一般认为样本数最少应在100100以上才适合使以上才适合使用最大似然估计法(用最大似然估计法(MLEMLE)来估计结构方程(侯杰泰,)来估计结构方程(侯杰泰,20042004),但样本数过大(如超过),但样本数过大(如超过400400到到500500时),时),MLEMLE会变得过度敏感,容易使所有的拟合度指标检验都会变得过度敏感,容易使所有的拟合度指标检验都出现拟合不佳的结果(侯杰泰,出现拟合不佳的结果(侯杰泰,20042004)。
)。
缺失数据处理:
列删除法、配对删除法、插补法缺失数据处理:
列删除法、配对删除法、插补法一般应用一般应用SEMSEM的论文中的数据分析的论文中的数据分析1.1.信度、效度检验信度、效度检验信度信度CronbachsCronbachs0.70.7效度效度验证性因子分析验证性因子分析2.2.评估模型拟合度评估模型拟合度一般论文一般论文的的SEMSEM评价包括如下步骤:
评价包括如下步骤:
估算每一个因子的载荷量估算每一个因子的载荷量标准化因子载荷,反映了观测变量影响潜在变量的部标准化因子载荷,反映了观测变量影响潜在变量的部分差异,用于表示观测变量与潜变量之间的相对重要分差异,用于表示观测变量与潜变量之间的相对重要程度。
程度。
检查每一个单一因子的测量模型对问卷数据的拟合度检查每一个单一因子的测量模型对问卷数据的拟合度检查整个模型对问卷数据的拟合度检查整个模型对问卷数据的拟合度估算潜变量之间的关系估算潜变量之间的关系SEMSEM的主要拟合度指标的主要拟合度指标11基本拟合标准基本拟合标准22模型内在结构拟合度模型内在结构拟合度33整体模型拟合度整体模型拟合度基本拟合标准基本拟合标准基本拟合标准是用来检验模型的误差以及误输入等问题。
基本拟合标准是用来检验模型的误差以及误输入等问题。
主要包括:
(11)不能有负的测量误差;
)不能有负的测量误差;
(22)测量误差必须达到显著性水平;
)测量误差必须达到显著性水平;
(33)因子载荷必须介于)因子载荷必须介于0.5-0.950.5-0.95之间;
之间;
(44)不能有很大的标准误差。
)不能有很大的标准误差。
模型内在结构拟合度模型内在结构拟合度模型的内在结构拟合度是用来评价模型内估计参数的显著程度、模型的内在结构拟合度是用来评价模型内估计参数的显著程度、各指标及潜在变量的信度。
各指标及潜在变量的信度。
(11)潜变量的组成信度()潜变量的组成信度(CRCR),),0.70.7以上表明组成信度较好;
以上表明组成信度较好;
潜变量的潜变量的CRCR值是其所有观测变量的信度的组合,该指标用来分析值是其所有观测变量的信度的组合,该指标用来分析潜变量的各观测变量间的一致性潜变量的各观测变量间的一致性(22)平均提炼方差)平均提炼方差(AVE)(AVE),0.50.5以上为可以接受的水平。
以上为可以接受的水平。
AVEAVE用于估计测量模型的聚合效度,反映了潜变量的各观测变量用于估计测量模型的聚合效度,反映了潜变量的各观测变量对该潜变量的平均差异解释力,即潜变量的各观测变量与测量误对该潜变量的平均差异解释力,即潜变量的各观测变量与测量误差相比在多大程度上捕捉到了该潜变量的变化。
差相比在多大程度上捕捉到了该潜变量的变化。
整体模型拟合度整体模型拟合度整体模型拟合度是用来评价模型与数据的拟合程度。
整体模型拟合度是用来评价模型与数据的拟合程度。
(11)绝对拟合度,用来确定模型可以预测协方差阵和相关矩阵的程度;
)绝对拟合度,用来确定模型可以预测协方差阵和相关矩阵的程度;
(22)简约拟合度,用来评价模型的简约程度;
)简约拟合度,用来评价模型的简约程度;
(33)增值拟合度,理论模型与虚无模型的比较。
)增值拟合度,理论模型与虚无模型的比较。
表1整体模型拟合度的评价指标及标准指标绝对拟合度简约拟合度增值拟合度2GFIRMRRMSEAPNFIPGFINFlTFICFI0.90.080.50.50.950.950.95评价标准不显著指标说明指标说明2卡方拟合指数卡方拟合指数检验选定的模型协方差矩阵与观察数据协方差矩阵相匹配的假设。
原假检验选定的模型协方差矩阵与观察数据协方差矩阵相匹配的假设。
原假设是模型协方差阵等于样本协方差阵。
如果模型拟合的好,卡方值应该不显著。
在这种设是模型协方差阵等于样本协方差阵。
如果模型拟合的好,卡方值应该不显