前麦弗逊独立悬架设计Word格式.doc
《前麦弗逊独立悬架设计Word格式.doc》由会员分享,可在线阅读,更多相关《前麦弗逊独立悬架设计Word格式.doc(16页珍藏版)》请在冰豆网上搜索。
减振器、缓冲块、横向稳定器等几部分组成等,见图1-1所示。
它们分别起到缓冲、减振、力的传递、限位和控制车辆侧倾角度的作用。
图1-1汽车悬架组成示意图
1-弹性元件2-纵向推力杆3-减震器4-横向稳定器5-横向推力杆
弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,现代轿车悬架多采用螺旋弹簧,个别高级轿车则使用空气弹簧。
螺旋弹簧只承受垂直载荷,缓和及抑制不平路面对车体的冲击,具有占用空间小,质量小,无需润滑的优点,但由于本身没有摩擦而没有减振作用。
这里我们选用螺旋弹簧。
减振器是为了加速衰减由于弹性系统引起的振动,减振器有筒式减振器,阻力可调式新式减振器,充气式减振器。
它是悬架机构中最精密和复杂的机械件。
导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。
种类有单杆式或多连杆式的。
钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。
有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。
现代汽车悬架的发展十分快,不断出现,崭新的悬架装置。
按控制形式不同分为被动式悬架和主动式悬架。
目前多数汽车上都采用被动悬架,也就是说汽车姿态(状态)只能被动地取决于路面及行驶状况和汽车的弹性元件,导向机构以及减振器这些机械零件。
1.3悬架的分类
汽车的悬架从大的方面来看,可以分为两类:
非独立悬架系统,
如图1-2所示。
图1-2独立悬架
1.3.1独立悬架
独立悬架是两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮,独立悬架所采用的车桥是断开式的。
这样使得发动机可放低安装,有利于降低汽车重心,并使结构紧凑。
独立悬架允许前轮有大的跳动空间,有利于转向,便于选择软的弹簧元件使平顺性得到改善。
同时独立悬架非簧载质量小,可提高汽车车轮的附着性。
独立悬架的类型及特点:
独立悬架的车轴分成两段(如图1-3),每只车轮用螺旋弹簧独立地,地连接安装在车架(或车身)下面,当一侧车轮受冲击,其运动不直接影响到另一侧车轮,独立悬架所采用的车桥是断开式的。
图1-3独立悬架的运动
现在,前悬架基本上都采用独立悬架系统,最常见的有双横滑柱
臂式(又称麦弗逊式)。
(1)双横臂式(图1-4)
。
图1-4双横臂式独立前悬架
工作原理:
由上短下长两根横臂连接车轮与车身,通过选择比例合适的长度,可使车轮和主销的角度及轮距变化不大
这种独立悬架被广泛应用在轿车前轮上。
双横臂的臂有做成A字形或V字形,V形臂的上下2个V形摆臂以一定的距离,分别安装在车轮上,另一端安装在车架上。
优点:
结构比较复杂,但经久耐用,同时减振器的负荷小,寿命长。
可以承载较大负荷,多用于轻型﹑小型货车的前桥。
缺点:
因为有两个摆臂,所以占用的空间比较大。
所以,乘用车的前悬架一般不用此种结构形式。
(2)麦弗逊式(图1-5)
图1-5麦弗逊式独立前悬架
工作原理:
这种悬架目前在轿车中采用很多。
这种悬架将减振器作为引
车轮跳动的滑柱,螺旋弹簧与其装于一体。
这种悬架将双横臂上臂去掉并以橡胶做支承,允许滑柱上端作少许角位移。
内侧空间大,有利于发动机布置,并降低车子的重心。
车轮上下运动时,主销轴线的角度会有变化,这是因为减振器
端支点横摆臂摆动。
以上问题可通过调整杆系设计布置合理得到解决。
麦弗逊独立悬架的特点:
优点:
技术成熟,结构紧凑,响应速度快,占用空间少,便于装车及整车布局,多用于中低档乘用车的前桥。
缺点:
由于结构过于简单,刚度小,稳定性较差,转弯侧倾明显,必须加装横向稳定器,加强刚度。
1.3.2非独立悬架
非独立悬架如图1-6所示。
其特点是两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上,当车轮上下跳动时定位参数变化小。
若采用钢板弹簧作弹性元件,它可兼起导向作用,使结构大为简化,降低成本。
目前广泛应用于货车和大客车上,有些轿车后悬架也有采用的。
非独立悬架由于非簧载质量比较大,高速行驶时悬架受到冲击载荷比较大,平顺性较差。
图1-6悬架在汽车的承载力
1.4悬架的国内外发展情况
汽车悬架的发展十分迅速,不断出现崭新的悬架装置。
正常情况按控制形式不同分为被动式悬架和主动式悬架。
目前多数汽车上都采用被动悬架,20世纪80年代以来主动悬架开始在一部分汽车上应用,并且目前还在进一步研究和开发中。
主动悬架可以能主动地控制垂直振动及其车身姿态,根据路面和行驶工况自动调整悬架刚度和阻尼。
随着当前世界汽车工业朝着高速、高性能、舒适、安全可靠的方向发展,空气悬架弹簧是当今汽车发展的一大趋势,特别是在大型客车和载重汽车上尤为突出。
其实,早在20世纪50年代,空气悬架弹簧就开始应用在载重车、小轿车、大客车及铁道车辆上。
到60年代,德国、美国等工业发达国家生产的大部分公共汽车上装有了主动式空气弹簧悬架。
国内早在20世纪60年代就设计生产了空气弹簧悬架,但由于工业技术条件有限,当时生产的产品使用效果不甚理想,以后在很长一段时期,产品没有进一步发展,因此,国外生产空气悬架弹簧的厂家凭借着资金与技术优势进入国内市场,为国内生产豪华客车的厂家配套成熟的主动式空气弹簧悬架产品。
同时我国公路条件的改善为汽车悬架创造了基本的使用条件,并产生了很大的促进作用。
高速公路的迅速发展、运输量的增加以及对高性能客车的需求,都对汽车的操纵稳定性、平顺性、安全性提出了更高的要求。
此外,重型汽车对路面破坏机制的研究及认识的进一步加深,政府对高速公路养护的重视,限制超载逐步在国内各地受到重视,这些因素都将促使新型悬架在重型车市场的应用将进一步扩大。
随着国内客车产品档次的逐步升级,空气悬架弹簧逐步被市场接受。
目前,在国内有多家客车厂生产的豪华大客车装有空气悬架,如安凯、金龙客车、桂林大宇、合肥现代、杭州客车等。
由于主动式空气悬架弹簧价格较贵,为降低成本,有的企业部分车型前桥使用钢板弹簧,后桥使用空气悬架弹簧。
由此可知悬架正充分关注这方面的变化,提高综合开发能力,以适应市场的需求和变化,新型悬架的诞生迫在眉睫。
本章小结
本章主要介绍了麦弗逊悬架的功用和优缺点。
并且针对麦弗逊独立悬架的未来发展趋势有了一定了解。
第2章悬架分析设计
2.1悬架结构方案分析
2.1.1独立悬架与非独立悬架结构形式的选择
为适应不同车型和不同类型车桥的需要,悬架有不同的结构型式,主要有独立悬架与非独立悬架。
独立悬架与非独立悬架各自的特点在上一章中已经作了介绍,本章不再累述,轿车对乘坐舒适性要求较高,故选择独立悬架。
2.1.2悬架具体结构形式的选择
麦弗逊式独立悬架是独立悬架中的一种,是一种减振器作滑动支柱并与下控制臂铰接组成的一种悬架形式,与其它悬架系统相比,结构简单、性能好、布置紧凑,占用空间少。
因此对布置空间要求高的发动机前置前驱动轿车的前悬架几乎全部采用了麦弗逊式悬架。
此次设计的悬架为发动机前置前轮驱动的哈飞路宝7110车型,故选择麦弗逊式独立悬架形式。
2.2弹性元件
弹性元件是悬架的最主要部件,因为悬架最根本的作用是减缓地面不平度对车身造成的冲击,即将短暂的大加速度冲击化解为相对缓慢的小加速度冲击。
使人不会造成伤害及不舒服的感觉;
对货物可减少其被破坏的可能性。
弹性元件主要有钢板弹簧、螺旋弹簧、扭杆弹簧、空气弹簧等常用类型。
除了板弹簧自身有减振作用外,配备其它种类弹性元件的悬架必须配备减振元件,使已经发生振动的汽车尽快静止。
钢板弹簧是汽车最早使用的弹性元件,由于存在诸多设计不足之处,现逐步被其它种类弹性元件所取代,本文选择螺旋弹簧。
2.3减振元件
减振元件主要起减振作用。
为加速车架和车身振动的衰减,以改善汽车的行驶平顺性,在大多数汽车的悬架系统内都装有减振器。
减振器和弹性元件是并联安装的,如图2-1所示。
汽车悬架系统中广泛采用液力减振器。
液力减振器的作用原理是当车架与车桥作往复相对运动时,而减振器中的活塞在缸筒内也作往复运动,则减振器壳体内的油液便反复地从一个内腔通过一些窄小的孔隙流入另一内腔。
此时,孔壁与油液间的摩擦及液体分子内摩擦便形成对振动的阻尼力,使车身和车架的振动能量转化为热能,而被油液和减振器壳体所吸收,然后散到大气中。
本文选择双筒式液力减振器。
图2-1含减振器的悬架简图
1.车身;
2.减震器;
3.弹性原件;
4.车桥。
2.4传力构件及导向机构
车轮相对于车架和车身跳动时,车轮(特别是转向轮)的运动轨迹应符合一定的要求。
因此,悬架中某些传力构件同时还承担着使车轮按一定轨迹相对于车架和车身跳动的任务,因而这些传力构件还起导向作用,故称导向机构。
对前轮导向机构的要求
(1)悬架上载荷变化时,保证轮距变化不超过+4.0mm,轮距变化大会引起轮胎早期磨损;
(2)悬架上载荷变化时,前轮定位参数要有合理的变化特性,车轮不应产生纵向加速度;
(3)汽车转弯行驶时,应使车身侧倾角小。
在0.4g侧向加速度作用下,车身侧倾角≤6-7度。
并使车轮与车身的倾斜同向,以增强不足转向效应。
(4)制动时,应使车身有抗前俯作用;
加速时,有抗后仰作用。
(5)具有足够的疲劳强度和寿命,可靠地传递除垂直力以外的各种力和力矩。
2.5横向稳定器
在多数的轿车和客车上,为防止车身在转向行驶等情况下发生过大的横向倾斜,在悬架中还设有辅助弹性元件——横向稳定器。
横向稳定器实际是一根近似U型的杆件,两个端头与车轮刚性连接,用来防止车身产生过大侧倾。
其原理是当一侧车轮相对车身位移比另外一侧位移大时,稳定杆承受扭矩,由其自身刚性限制这种倾斜,特别是前轮,可有效防止因一侧车轮遇障碍物时,限制该侧车轮跳动幅度。
本章主要介绍麦弗逊悬架的主要结构组成,各个零部件的工作原理以及在汽车整体运动中的主要功用。
对在以后的悬架设计中提供了理论基础。
第3章悬架主要参数的确定
悬架设计可以大致分为结构型式及主要参数选择和详细设计两个阶段,
相对阻尼系数ψ的物理意义是:
减震器的阻尼作用在与不同刚度C和不同簧上质量的悬架系统匹配时,会产生不同的阻尼效果。
ψ值大,振动能迅速衰减,同时又能将较大的路面冲击力传到车身;
ψ值小则反之,通常情况下,将压缩行程时的相对阻