Matlab中插值函数汇总和使用说明Word文档格式.docx

上传人:b****1 文档编号:15357863 上传时间:2022-10-29 格式:DOCX 页数:9 大小:19.85KB
下载 相关 举报
Matlab中插值函数汇总和使用说明Word文档格式.docx_第1页
第1页 / 共9页
Matlab中插值函数汇总和使用说明Word文档格式.docx_第2页
第2页 / 共9页
Matlab中插值函数汇总和使用说明Word文档格式.docx_第3页
第3页 / 共9页
Matlab中插值函数汇总和使用说明Word文档格式.docx_第4页
第4页 / 共9页
Matlab中插值函数汇总和使用说明Word文档格式.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

Matlab中插值函数汇总和使用说明Word文档格式.docx

《Matlab中插值函数汇总和使用说明Word文档格式.docx》由会员分享,可在线阅读,更多相关《Matlab中插值函数汇总和使用说明Word文档格式.docx(9页珍藏版)》请在冰豆网上搜索。

Matlab中插值函数汇总和使用说明Word文档格式.docx

N,其中N为向量Y的长度,或者为矩阵Y的行数。

(3)yi=interp1(x,Y,xi,method)

用指定的算法计算插值:

’nearest’:

最近邻点插值,直接完成计算;

’linear’:

线性插值(缺省方式),直接完成计算;

’spline’:

三次样条函数插值。

对于该方法,命令interp1调用函数spline、ppval、mkpp、umkpp。

这些命令生成一系列用于分段多项式操作的函数。

命令spline用它们执行三次样条函数插值;

’pchip’:

分段三次Hermite插值。

对于该方法,命令interp1调用函数pchip,用于对向量x与y执行分段三次内插值。

该方法保留单调性与数据的外形;

’cubic’:

与’pchip’操作相同;

’v5cubic’:

在MATLAB5.0中的三次插值。

对于超出x范围的xi的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。

对其他的方法,interp1将对超出的分量执行外插值算法。

(4)yi=interp1(x,Y,xi,method,'

extrap'

对于超出x范围的xi中的分量将执行特殊的外插值法extrap。

(5)yi=interp1(x,Y,xi,method,extrapval)

确定超出x范围的xi中的分量的外插值extrapval,其值通常取NaN或0。

例1

1.>

>

x=0:

10;

y=x.*sin(x);

2.>

xx=0:

.25:

yy=interp1(x,y,xx);

3.>

plot(x,y,'

kd'

xx,yy)

复制代码

例2

year=1900:

10:

2010;

product=[75.99591.972105.711123.203131.669150.697179.323203.212226.505

3.249.633256.344267.893];

4.>

p1995=interp1(year,product,1995)

5.>

x=1900:

1:

6.>

y=interp1(year,product,x,'

pchip'

);

7.>

plot(year,product,'

o'

x,y)

插值结果为:

1.p1995=

2.252.9885

命令2interp2

功能二维数据内插值(表格查找)

(1)ZI=interp2(X,Y,Z,XI,YI)

返回矩阵ZI,其元素包含对应于参量XI与YI(可以是向量、或同型矩阵)的元素,即Zi(i,j)←[Xi(i,j),yi(i,j)]。

用户可以输入行向量和列向量Xi与Yi,此时,输出向量Zi与矩阵meshgrid(xi,yi)是同型的。

同时取决于由输入矩阵X、Y与Z确定的二维函数Z=f(X,Y)。

参量X与Y必须是单调的,且相同的划分格式,就像由命令meshgrid生成的一样。

若Xi与Yi中有在X与Y范围之外的点,则相应地返回nan(NotaNumber)。

(2)ZI=interp2(Z,XI,YI)

缺省地,X=1:

n、Y=1:

m,其中[m,n]=size(Z)。

再按第一种情形进行计算。

(3)ZI=interp2(Z,n)

作n次递归计算,在Z的每两个元素之间插入它们的二维插值,这样,Z的阶数将不断增加。

interp2(Z)等价于interp2(z,1)。

(4)ZI=interp2(X,Y,Z,XI,YI,method)

用指定的算法method计算二维插值:

双线性插值算法(缺省算法);

最临近插值;

三次样条插值;

双三次插值。

例3:

[X,Y]=meshgrid(-3:

3);

Z=peaks(X,Y);

[XI,YI]=meshgrid(-3:

.125:

ZZ=interp2(X,Y,Z,XI,YI);

surfl(X,Y,Z);

holdon;

surfl(XI,YI,ZZ+15)

axis([-33-33-520]);

shadingflat

8.>

holdoff

例4

years=1950:

1990;

service=10:

30;

wage=[150.697199.592187.625

4.179.323195.072250.287

5.203.212179.092322.767

6.226.505153.706426.730

7.249.633120.281598.243];

w=interp2(service,years,wage,15,1975)

1.w=

2.190.6288

命令3interp3

功能三维数据插值(查表)

(1)VI=interp3(X,Y,Z,V,XI,YI,ZI)

找出由参量X,Y,Z决定的三元函数V=V(X,Y,Z)在点(XI,YI,ZI)的值。

参量XI,YI,ZI是同型阵列或向量。

若向量参量XI,YI,ZI是不同长度,不同方向(行或列)的向量,这时输出参量VI与Y1,Y2,Y3为同型矩阵。

其中Y1,Y2,Y3为用命令meshgrid(XI,YI,ZI)生成的同型阵列。

若插值点(XI,YI,ZI)中有位于点(X,Y,Z)之外的点,则相应地返回特殊变量值NaN。

(2)VI=interp3(V,XI,YI,ZI)

缺省地,X=1:

N,Y=1:

M,Z=1:

P,其中,[M,N,P]=size(V),再按上面的情形计算。

(3)VI=interp3(V,n)

作n次递归计算,在V的每两个元素之间插入它们的三维插值。

这样,V的阶数将不断增加。

interp3(V)等价于interp3(V,1)。

(4)VI=interp3(......,method)%用指定的算法method作插值计算:

‘linear’:

线性插值(缺省算法);

‘cubic’:

三次插值;

‘spline’:

‘nearest’:

最邻近插值。

说明在所有的算法中,都要求X,Y,Z是单调且有相同的格点形式。

当X,Y,Z是等距且单调时,用算法’*linear’,’*cubic’,’*nearest’,可得到快速插值。

例5

[x,y,z,v]=flow(20);

[xx,yy,zz]=meshgrid(.1:

10,-3:

3,-3:

vv=interp3(x,y,z,v,xx,yy,zz);

slice(xx,yy,zz,vv,[69.5],[12],[-2.2]);

shadinginterp;

colormapcool

命令4interpft

功能用快速Fourier算法作一维插值

(1)y=interpft(x,n)

返回包含周期函数x在重采样的n个等距的点的插值y。

若length(x)=m,且x有采样间隔dx,则新的y的采样间隔dy=dx*m/n。

注意的是必须n≥m。

若x为一矩阵,则按x的列进行计算。

返回的矩阵y有与x相同的列数,但有n行。

(2)y=interpft(x,n,dim)

沿着指定的方向dim进行计算

命令5griddata

功能数据格点

(1)ZI=griddata(x,y,z,XI,YI)

用二元函数z=f(x,y)的曲面拟合有不规则的数据向量x,y,z。

griddata将返回曲面z在点(XI,YI)处的插值。

曲面总是经过这些数据点(x,y,z)的。

输入参量(XI,YI)通常是规则的格点(像用命令meshgrid生成的一样)。

XI可以是一行向量,这时XI指定一有常数列向量的矩阵。

类似地,YI可以是一列向量,它指定一有常数行向量的矩阵。

(2)[XI,YI,ZI]=griddata(x,y,z,xi,yi)

返回的矩阵ZI含义同上,同时,返回的矩阵XI,YI是由行向量xi与列向量yi用命令meshgrid生成的。

(3)[XI,YI,ZI]=griddata(.......,method)

用指定的算法method计算:

基于三角形的线性插值(缺省算法);

基于三角形的三次插值;

最邻近插值法;

‘v4’:

MATLAB4中的griddata算法。

命令6spline

功能三次样条数据插值

(1)yy=spline(x,y,xx)

对于给定的离散的测量数据x,y(称为断点),要寻找一个三项多项式y=p(x),以逼近每对数据(x,y)点间的曲线。

过两点(xi,yi)和(xi+1,yi+1)只能确定一条直线,而通过一点的三次多项式曲线有无穷多条。

为使通过中间断点的三次多项式曲线具有唯一性,要增加两个条件(因为三次多项式有4个系数):

a.三次多项式在点(xi,yi)处有:

p&

cent;

i(xi)=p&

i(xi);

b.三次多项式在点(xi+1,yi+1)处有:

i(xi+1)=pi&

(xi+1);

c.p(x)在点(xi,yi)处的斜率是连续的(为了使三次多项式具有良好的解析性,加上的条件);

d.p(x)在点(xi,yi)处的曲率是连续的;

对于第一个和最后一个多项式,人为地规定如下条件:

①.p&

1&

(x)=p&

2&

(x)

②.p&

n&

-1(x)

上述两个条件称为非结点(not-a-knot)条件。

综合上述内容,可知对数据拟合的三次样条函数p(x)是一个分段的三次多项式:

&

iuml;

&

icirc;

í

ì

pound;

=

nnn+1

223

112

p(x)xxx

p(x)

LLLL

其中每段pi(x)都是三次多项式。

该命令用三次样条插值计算出由向量x与y确定的一元函数y=f(x)在点xx处的值。

若参量y是一矩阵,则以y的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1