循环流化床燃烧技术Word文档下载推荐.docx
《循环流化床燃烧技术Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《循环流化床燃烧技术Word文档下载推荐.docx(41页珍藏版)》请在冰豆网上搜索。
2.燃料适应性强,特别适合中、低硫煤;
3.燃烧效率高,可达95%~99%;
4.负荷适应性好。
负荷调节范围30%~100%。
循环流化床锅炉主要由燃烧系统、气固分离循环系统、对流烟道三部分组成。
其中燃烧系统包括风室、布风板、燃烧室、炉膛、给煤系统等几部分;
气固分离循环系统包括物料分离装置和返料装置两部分;
对流烟道包括过热器、省煤器、空气预热器等几部分。
循环流化床锅炉属低温燃烧。
燃料由炉前给煤系统送入炉膛,送风一般设有一次风和二次风,有的生产厂加设三次风,一次风由布风板下部送入燃烧室,主要保证料层流化;
二次风沿燃烧室高度分级多点送入,主要是增加燃烧室的氧量保证燃料燃烬;
三次风进一步强化燃烧。
燃烧室内的物料在一定的流化风速作用下,发生剧烈扰动,部分固体颗料在高速气流的携带下离开燃烧室进入炉膛,其中较大颗料因重力作用沿炉膛内壁向下流动,一些较小颗料随烟气飞出炉膛进入物料分离装置,炉膛内形成气固两相流,进入分离装置的烟气经过固气分离,被分离下来的颗料沿分离装置下部的返料装置送回到燃烧室,经过分离的烟气通过对流烟道内的受热面吸热后,离开锅炉。
因为循环流化床锅炉设有高效率的分离装置,被分离下来的颗料经过返料器又被送回炉膛,使锅炉炉膛内有足够高的灰浓度,因此循环流化床锅炉不同于常规锅炉炉膛仅有的辐射传热方式,而且还有对流及热传等传热方式,大大提高了炉膛的传导热系数,确保锅炉达到额定出力。
循环流化床锅炉概述
循环流化床锅炉是一种高效、低污染的节能产品。
自问世以来,在国内外得到了迅速的推广与发展。
但由于循环流化床锅炉自身的特点,在运行操作时不同于层燃炉和煤粉炉,如果运行中不能满足其对热工参数的特殊要求,极易酿成事故。
而目前有关循环流化床锅炉操作运行方面的资料还较少,笔者根据几年来锅炉设计及现场调试的经验,对循环流化床锅炉运行参数的控制与调整作了一下简述,希望能对锅炉运行人员有所启发。
1循环流化床锅炉总体结构
2循环流化床锅炉燃烧及传热特性
循环流化床锅炉属低温燃烧。
3循环流化床锅炉主要热工参数的控制与调整
3.1料层温度
料层温度是指燃烧密相区内流化物料的温度。
它是一个关系到锅炉安全稳定运行的关键参数。
料层温度的测定一般采用不锈钢套管热电偶作一次元件,布置在距布风板200-500mm左右燃烧室密相层中,插入炉墙深度15-25mm,数量不得少于2只。
在运行过程中要加强对料层温度监视,一般将料层温度控制在850℃-950℃之间,温度过高,容易使流化床体结焦造成停炉事故;
温度太低易发生低温结焦及灭火。
必须严格控制料层温度最高不能超过970℃,最低不应低于800℃。
在锅炉运行中,当料层温度发生变化时,可通过调节给煤量、一次风量及送回燃烧室的返料量,调整料层温度在控制范围之内。
如料层温度超过970℃时,应适当减少给煤量、相应增加一次风量并减少返料量,使料层温度降低;
如料层温度低于800℃时,应首先检查是否有断煤现象,并适当增加给煤量,减少一次风量,加大返料量,使料层温度升高。
一但料层温度低于700℃,应做压火处理,需待查明温度降低原因并排除后再启动。
3.2返料温度
返料温度是指通过返料器送回到燃烧室中的循环灰的温度,它可以起到调节料层温度的作用。
对于采用高温分离器的循环流化床锅炉,其返料温度较高,一般控制返料温度高出料层温度20-30℃,可以保证锅炉稳定燃烧,同时起到调整燃烧的作用。
在锅炉运行中必须密切监视返料温度,温度过高有可能造成返料器内结焦,特别是在燃用较难燃的无烟煤时,因为存在燃料后燃的情况,温度控制不好极易发生结焦,运行时应控制返料温度最高不能超过1000℃。
返料温度可以通过调整给煤量和返料风量来调节,如温度过高,可适当减少给煤量并加大返料风量,同时检查返料器有无堵塞,及时清除,保证返料器的通畅。
3.3料层差压
料层差压是一个反映燃烧室料层厚度的参数。
通常将所测得的风室与燃烧室上界面之间的压力差值作为料层差压的监测数值,在运行都是通过监视料层差压值来得到料层厚度大小的。
料层厚度越大,测得的差压值亦越高。
在锅炉运行中,料层厚度大小会直接影响锅炉的流化质量,如料层厚度过大,有可能引起流化不好造成炉膛结焦或灭火。
一般来说,料层差压应控制在7000-9000Pa之间。
料层的厚度(即料层差压)可以通过炉底放渣管排放底料的方法来调节。
用户在使用过程中,应根据所燃用煤种设定一个料层差压的上限和下限作为排放底料开始和终止的基准点。
3.4炉膛差压
炉膛差压是一个反映炉膛内固体物料浓度的参数。
通常将所测得的燃烧室上界面与炉膛出口之间的压力差作为炉膛差压的监测数值。
炉膛差压值越大,说明炉膛内的物料浓度越高,炉膛的传热系数越大,则锅炉负荷可以带得越高,因此在锅炉运行中应根据所带负荷的要求,来调节炉膛差压。
而炉膛差压则通过锅炉分离装置下的放灰管排放的循环灰量的多少来控制,一般炉膛差压控制在500-2000Pa之间。
用户根据燃用煤种的灰份和粒度设定一个炉膛差压的上限和下限作为开始和终止循环物料排放的基准点。
此外,炉膛差压还是监视返料器是否正常工作的一个参数。
在锅炉运行中,如果物料循环停止,则炉膛差压会突然降低,因此在运行中需要特别注意。
4需要特别说明的几个问题
4.1返料量
控制返料量是循环流化床锅炉运行操作时不同于常规锅炉之处,根据前面提到的循环流化床锅炉燃烧及传热的特性,返料量对循环流化床锅炉的燃烧起着举足轻重的作用,因为在炉膛里,返料灰实质上是一种热载体,它将燃烧室里的热量带到炉膛上部,使炉膛内的温度场分布均匀,并通过多种传热方式与水冷壁进行换热,因此有较高的传热系数,(其传热效率约为煤粉炉的4-6倍)通过调整返料量可以控制料层温度和炉膛差压并进一步调节锅炉负荷。
另一方面,返料量的多少与锅炉分离装置的分离效率有着直接的关系,也就是说,分离器的分离效率越高,分离出的烟气中的灰量就越大,从而锅炉对负荷的调节富裕量就越大,操作运行相对就容易一些。
4.2风量的调整
在锅炉运行过程中,许多用户往往只靠风门开度的大小来调节风量,但对于循环流化床锅炉来说,其对风量的控制就要求比较准确。
对风量的调整原则是在一次风量满足流化的前提下,相应地调整二次风和三次风量。
因为一次风量的大小直接关系到流化质量的好坏,循环流化床锅炉在运行前都要进行冷态试验,并作出在不同料层厚度(料层差压)下的临界流化风量曲线,在运行时以此作为风量调整的下限,如果风量低于此值,料层就可能流化不好,时间稍长就会发生结焦。
对二次风量的调整主要是依据烟气中的含氧量多少,通常以过热器后的氧量为准,一般控制在3-5%左右,如含氧量过高,说明风量过大,会增加锅炉的排烟热损失q2;
如过小又会引起燃烧不完全,增加化学不完全燃烧损失q3和机械不完全燃烧损失q4。
如果在运行中总风量不够,应逐渐加大鼓引风量,满足燃烧要求,并不断调节一二三次风量,使锅炉达到最佳的经济运行指标。
循环流化床锅炉基本讲述
循环流化床锅炉技术是近几十年来迅速发展起来的一项高效低污染清洁燃煤技术。
国际上这项技术在电站锅炉,工业锅炉和废弃物处理利用等领域已得到广泛的商业应用,并向几十万千瓦给规模的大型循环流化床锅炉发展。
国内在这方面的研究、开发和应用也是方兴未艾,已有上百台循环流化床锅炉投入运行或正在制造之中,可以预见,未来的几年将是循环流化床飞速发展的一个重要时期。
现根据我国近几年来出版的关于循环流化床锅炉理论设计与运行中有关循环流化床锅炉的原理、特点、启动和运行等方面的情况介绍如下:
一、循环流化床锅炉的工作原理:
(一)流态化过程:
当流体向上流动流过颗粒床层时,其运行状态是变化的。
流速较低时,颗粒静止不动,流体只在颗粒之间的缝隙中通过。
当流速增加到某一速度之后,颗粒不再由分布板所支持,而全部由流体的摩擦力所承托。
此时对于单个颗粒来讲,它不再依靠与其他邻近颗粒的接触面维持它的空间位置。
相反地,在失去了以前的机械支承后,每个颗粒可在床层中自由运动;
就整个床层面言,具有了许多类似流体的性质。
这种状态就被称为流态化。
颗粒床层从静止状态转变为流态化时的最低速度,称为临界流化速度。
流化床类似流体的性质主要有以下几点
(1)在任一高度的静止近似于在此高度以上单位床截面内固体颗粒的重量。
(2)无论床层如何倾斜,床表面总是保持水平,床层的形状也保持容器的形状;
(3)床内固体颗粒可以像流体一样从底部或侧面的孔口中排出;
(4)密度高于床层表观察的物体化床内会下沉,密度小的物体会浮在床面上;
(5)床内颗粒混合良好,颗粒均匀分散于床层中,称之为“散式”流态化。
因此,当加热床层时,整个床层的温度基本均匀。
而一般的气、固体态化,气体并不均匀地流过颗粒床层。
一部分气体形成气泡经床层短路逸出,颗粒则被分成群体作湍流运动,床层中的空隙率随位置和时间的不同而变化,因此这种流态化称之为“聚式”流态化。
煤的燃烧过程是一个气、固流态化过程。
二、循环流化床的原理和特点:
循环流化床在不同气流速度下固体颗粒床层的流动状态也不同。
随着气流速度的增加,固体颗粒分别呈现固体床、鼓泡流化床、湍流流化床和气力输送状态。
循环流化床的上升阶段通常运行在快速流化床状态下,快速流化床流体动力特性的形成对循环流化床是至关重要的,此时,固体燃料被速度大于单颗燃料的终端速度的气流所流化,以颗粒团的形式上下运动,产生高度的返混。
颗粒团向各个方向运动,而且不断形成和解体,在这种流体状态下气流还可携带一定数量的大颗粒,尽管其终端速度远大于截平均气速。
这种气、固运