我国国内生产总值的多元线性回归分析.doc
《我国国内生产总值的多元线性回归分析.doc》由会员分享,可在线阅读,更多相关《我国国内生产总值的多元线性回归分析.doc(15页珍藏版)》请在冰豆网上搜索。
计量经济学案例分析
我国国内生产总值的多元线性回归分析
改革开放以来,中国经济取得了令全世界震惊的巨大成就,持续25年年均增长率超过9%,经济总规模已经稳居世界第四。
2010年中国经济增长率更是高达10%。
因此,许多专家学者指出,我国目前的经济形势是上世纪90年代中期以来最好的。
由此可见,GDP作为现代国民经济核算体系的核心指标,它的总量可以反映一个国家和地区的经济发展及人民的生活水平,其结构可反映社会生产与使用,投资与消费之间的比例关系及宏观经济效益,对于经济研究、经济管理都具有十分重要的意义。
本文运用1982—2011年国内生产总值与城乡居民存款年底、财政收入、居民消费价格指数以及货物进出口总额的相关数据,建立多元线性回归模型,对我国国内生产总值GDP的影响因素作计量模型的实证分析。
表1为由《2012年中国统计年鉴》得到的1982-2011年的有关数据。
表11982—2011年国内生产总值及相关指标数据
年份
国内生产总值(亿元)
城乡居民存款年底(亿元)
财政收入(亿元)
居民消费价格指数
货物进出口总额(亿元)
1982
5323.35
447.3
1212.33
102
771.3
1983
5962.65
572.6
1366.95
102
860.1
1984
7208.05
776.62
1642.86
102.7
1201.00
1985
9016.04
1622.60
2004.82
109.3
2066.70
1986
10275.18
1471.45
2122.01
106.5
2580.40
1987
12058.62
2067.60
2199.35
107.3
3084.20
1988
15042.82
2659.16
2357.24
118.8
3821.80
1989
16992.32
5196.40
2664.90
209.9
4155.9
1990
18667.82
7119.60
2937.10
216.4
5560.1
1991
21781.50
9244.90
3149.48
223.8
7225.8
1992
26923.48
11757.30
3483.37
238.1
9119.6
1993
35333.92
15203.50
4348.95
273.1
11271
1994
48197.86
21518.80
5218.10
339
20381.9
1995
60793.73
29662.30
6242.20
396.9
23499.9
1996
71176.59
38520.80
7407.99
429.9
24133.8
1997
78973.03
46279.80
8651.14
441.9
26967.2
1998
84402.28
53407.47
9875.95
438.4
26849.7
1999
89677.05
59621.83
11444.08
432.2
29896.2
2000
99214.55
64332.38
13395.23
434
39273.2
2001
109655.17
73762.43
16386.04
437
42183.6
2002
120332.69
86910.65
18903.64
433.5
51378.2
2003
135822.76
103617.65
21715.25
438.7
70483.5
2004
159878.34
119555.39
26396.47
455.8
95539.1
2005
184937.37
141050.99
31649.29
464
116921.8
2006
216314.43
161587.30
38760.20
471
140974
2007
265810.31
172534.19
51321.78
493.6
166863.7
2008
314045.43
217885.35
61330.35
522.7
179921.47
2009
340902.81
260771.66
68518.30
519
150648.06
2010
401512.80
303302.49
83101.51
536.1
201722.15
2011
473104.05
343635.89
103874.43
565
236401.99
数据来源:
国家统计局《2012年统计年鉴》
一、建立多元线性回归模型
1.1变量选择
首先对所涉及的变量与数据进行说明,本文选取我国“国内生产总值”为被解释变量(用Y表示),众所周知影响国内生产总值的因素有很多国内生产总值,因此我们选取了“城乡居民存款年底、财政收入、居民消费价格指数、货物进出口总额”为解释变量(分别用、、、表示),数据的时间跨度为1982—2011年我国国内生产总值及各项指标的时间序列数据。
希望通过建立一个合适的回归模型来从理论上找出影响国内生产总值的因素,从而提出增加国内生产总值的方法。
1.2模型构建
影响国内生产总值的因素有很多。
本文着重考虑城乡居民存款年底、财政收入、居民消费价格指数、货物进出口总额四个变量。
随着城乡居民存款年底、财政收入、居民消费价格指数、货物进出口总额增加,国内生产总值不断提高,但仍存在国内生产总值增长缓慢的现象。
因此为了了解现阶段我国国内生产总值增长缓慢的原因,分析各影响因素对经济增长的贡献情况,结合我国当前的宏观经济形势,对国家宏观经济政策提出一点自己的看法。
现分析我国国内生产总值与城乡居民存款年底、财政收入、居民消费价格指数、货物进出口总额的关系。
利用Eviews软件,做散点图:
图一我国国内生产总值与城乡居民存款年底的散点图
图二我国国内生产总值与财政收入的散点图
图三我国国内生产总值与居民消费价格指数的散点图
图四我国国内生产总值与货物进出口总额的散点图
由上图可知:
我国国内生产总值Y与城乡居民存款年底、财政收入、居民消费价格指数、货物进出口总额成线性关系,即:
Y随着的增加而增加。
于是建立多元线性模型:
(1)
其中:
—我国国内生产总值;—城乡居民存款年底;—财政收入;—居民消费价格指数;—货物进出口总额;—随机误差项注:
这里假设相互独立,且服从均值为0,方差为1的正态分布;
二、参数估计
最小二乘法(法),普遍用于线性回归模型中,利用最小二乘法可以简单快捷地求得未知数据,且使得所得数据与实际数据之间误差的平方和为最小。
运用EViews软件,对数据进行回归分析,结果如下:
表2EViews回归结果
DependentVariable:
Y
Method:
LeastSquares
Date:
11/24/13Time:
18:
51
Sample:
19822011
Includedobservations:
30
Variable
Coefficient
Std.Error
t-Statistic
Prob.
C
-8218.578
1777.294
-4.624209
0.0001
X1
0.338696
0.065316
5.185504
0.0000
X2
2.644429
0.208139
12.70512
0.0000
X3
95.12859
7.689782
12.37078
0.0000
X4
0.176135
0.039906
4.413743
0.0002
R-squared
0.999542
Meandependentvar
114644.6
AdjustedR-squared
0.999468
S.D.dependentvar
127824.0
S.E.ofregression
2947.453
Akaikeinfocriterion
18.96628
Sumsquaredresid
2.17E+08
Schwarzcriterion
19.19982
Loglikelihood
-279.4942
F-statistic
13629.19
Durbin-Watsonstat
0.803825
Prob(F-statistic)
0.000000
根据表2中EViews软件输出结果可知:
,,,,
因此,建立多元线性回归方程为:
三、模型的检验
3.1经济意义检验
在上述回归模型中,前者代表回归模型的截距,后者代表回归模型的斜率。
由于,即:
在其他解释变量、、保持不变时,城乡居民存款年底每增加1亿元,国内生产总值将增加0.339亿元;同理:
在解释变量、、保持不变时,财政收入每增加1亿元,国内生产总值将增加2.644亿元;在解释变量、、保持不变时,居民消费价格指数每增加1单位,国内生产总值将增加95.129亿元;在解释变量、、保持不变时,货物进出口总额每增加1亿元,国内生产总值将增加0.176亿元。
实证结果与上述理论预期一致。
系数符合经济意义,均符合经济理论及实际情况。
3.2统计检验
3.2.1拟合优度检验()
拟合优度检验主要是运用判定系数和回归标准差,检验模型对样本观测值的拟合程度。
R的取值范围是[0,1]。
R的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R的值越接近0,说明回归直线对观测值的拟合程度越差。
根据表2输出结果可知:
,
由接近1,说明样本回归直线对观测值的拟合程度越好。
3.2.2显著性检验
最小二乘法估计的是由和的样本观测值求出,为了确定它们的可靠程度,要进行显著性检验,来确定是否显著(不等于0)。
(1)t检验
首先,对回归分析的估计值的显著性检验用t检验,由EViews软件输出结果,得:
利用公式,得:
在时,,因为=4.6242>2.048,所以在95%的置信度下拒绝原假设,说明截距项在回归方程显著不为零。
由于、、、均大于,因此解释变量城乡居民存款年底、财政收入、居民消费价格指数、货物进出口总额显著的影响国内生产总值Y。
其次,由公式计算的置信区间为:
综上,得:
表2参数含置信区间
参数
参数估计值
95%的置信区间
-8218.578
[-11858.476-4578.680]
0.3387
[0.2050.473]
2.6445
[2.2183.071]
59.1286
[7.380110.877]
0.1762
[0.0940.258]
由表2可知,在95%的置信度下拒绝回归系数为零的假设,说明解释变量显著的影响变量。
(2)F检验
根据表2中Eviews软件输出的结果可知:
在5%的显著水平下,查F分布表,得到临