青岛版五四制五年级数学下册总复习知识点归纳Word下载.docx

上传人:b****2 文档编号:15242205 上传时间:2022-10-28 格式:DOCX 页数:15 大小:29.88KB
下载 相关 举报
青岛版五四制五年级数学下册总复习知识点归纳Word下载.docx_第1页
第1页 / 共15页
青岛版五四制五年级数学下册总复习知识点归纳Word下载.docx_第2页
第2页 / 共15页
青岛版五四制五年级数学下册总复习知识点归纳Word下载.docx_第3页
第3页 / 共15页
青岛版五四制五年级数学下册总复习知识点归纳Word下载.docx_第4页
第4页 / 共15页
青岛版五四制五年级数学下册总复习知识点归纳Word下载.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

青岛版五四制五年级数学下册总复习知识点归纳Word下载.docx

《青岛版五四制五年级数学下册总复习知识点归纳Word下载.docx》由会员分享,可在线阅读,更多相关《青岛版五四制五年级数学下册总复习知识点归纳Word下载.docx(15页珍藏版)》请在冰豆网上搜索。

青岛版五四制五年级数学下册总复习知识点归纳Word下载.docx

倍数和因数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的因数。

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

例如:

10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:

3、6、9、12……其中最小的倍数是3,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:

202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:

5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:

12、108、204都能被3整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。

自然数按能否被2整除的特征可分为奇数和偶数。

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:

2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

最小的质数是2

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、9、12都是合数。

最小的合数是4.

1既不是质数也不是合数,自然数除了1外,不是质数就是合数。

如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×

5,3和5叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28分解质因数28=2×

7

几个数公有的因数,叫做这几个数的公因数。

其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;

18的因数有1、2、3、6、9、18。

其中,1、2、3、6是12和18的公因数,6是它们的最大公因数。

公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

例如:

15和7互质,14和7不互质。

两个合数的公因数只有1时,这两个合数互质。

如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。

如果两个数是互质数,它们的最大公因数就是1。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、18……

3的倍数有3、6、9、12、15、18……其中6、12、……是2、3的公倍数,6是它们的最小公倍数。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

把一个合数分解质因数,通常用短除法。

先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

求几个数的最大公因数的方法是:

先用这几个数的公因数连续去除,一直除到所得的商只有公因数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公因数。

求几个数的最小公倍数的方法是:

先用这几个数(或其中的部分数)的公因数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

(二)小数

1小数的意义

把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

在小数里,每相邻两个计数单位之间的进率都是10。

小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2小数的分类

有限小数:

小数部分的数位是有限的小数,叫做有限小数。

41.7、25.3、0.23都是有限小数。

无限小数:

小数部分的数位是无限的小数,叫做无限小数。

4.33……3.1415926……

无限不循环小数:

一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

π

循环小数:

一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。

3.555……0.0333……12.109109……

一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。

3.99……的循环节是“9”,0.5454……的循环节是“54”。

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。

如果循环节只有一个数字,就只在它的上面点一个点。

3.777……简写作0.5302302……简写作。

(三)分数

1分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

表示其中的一份的数,叫做分数单位。

在分数里,中间的横线叫做分数线;

分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;

分数线上面的数叫做分子,表示有这样的多少份。

2分数的分类

真分数:

分子比分母小的分数叫做真分数。

真分数小于1。

假分数:

分子比分母大或者分子和分母相等的分数,叫做假分数。

假分数大于或等于1。

带分数:

假分数可以写成整数与真分数合成的数,通常叫做带分数。

3约分和通分

把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数

表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。

百分数表示的两个数量间的关系,而不是表示一种数量,所以不带单位名称。

(五)正数和负数

二方法

(一)数的读法和写法

1.整数的读法:

从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。

每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

3000600(读成“三百万六百”或“三百万零六百”都对

2.整数的写法:

(略)

(二)数的改写

一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

(三)数的互化

1.小数化成分数:

原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2.分数化成小数:

用分母去除分子。

能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3.一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;

如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。

4.小数化成百分数:

只要把小数点向右移动两位,同时在后面添上百分号。

5.百分数化成小数:

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

6.分数化成百分数:

通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7.百分数化成小数:

先把百分数改写成分数,能约分的要约成最简分数。

(四)约分和通分

约分的方法:

用分子和分母的公因数(1除外)去除分子、分母;

通常要除到得出最简分数为止。

通分的方法:

先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三性质和规律

(一)商不变的规律

商不变的规律:

在除法里,被除数和除数同时扩大或者同时缩小相同的倍数,商不变。

(二)小数的性质

小数的性质:

在小数的末尾添上零或者去掉零小数的大小不变。

(三)小数点位置的移动引起小数大小的变化

1.小数点向右移动一位,原来的数就扩大10倍;

小数点向右移动两位,原来的数就扩大100倍;

小数点向右移动三位,原来的数就扩大1000倍……

2.小数点向左移动一位,原来的数就缩小……

3.小数点向左移或者向右移位数不够时,要用“0"

补足位。

(四)分数的基本性质

分数的基本性质:

分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变。

(五)分数与除法的关系

1.被除数÷

除数=被除数/除数被除数相当于分子,除数相当于分母。

2.因为零不能作除数,所以分数的分母不能为零。

知识点三:

数的大小比较

知识点四:

数的性质

知识点五:

因数、倍数、质数、合数

(二)数的运算

四则运算的意义

1、加法的意义:

把两个数合并成一个数的运算。

2、减法的意义:

已知两个数的和与其中的一个加数,求另一个加数的运算。

3、整数乘法的意义:

求几个相同加数的和的简便运算。

4、小数乘法的意义:

小数乘整数与整数乘法的意义相同,也是求几个相同加数的和的简便运算;

一个数乘小数求这个数的十分之几、百分之几……是多少。

5、分数乘法的意义:

分数乘整数与整数乘法的意义相同,也是求几个相同加数的和的简便运算;

一个数乘分数就是求这个数的几分之几是多少。

6、除法的意义:

已知两个因数的积和其中的一个因数,求另一个因数的运算。

知识点二:

四则运算的法则

整数加减法,小数加减法,分数加减法,整数乘法,分数乘法,整数除法,小数除法,分数除法

四则混合运算

加法和减法叫做第一级运算,乘法和除法叫做第二级运算。

在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;

如果含有两级运算,要先做第二级运算,再做第一级运算。

在一个有括号的算式里,要先算小括号里面,再算中括号里面的,最后算大括号里面的。

运用定律,使计算简便

加法交换律:

a+b=b+a加法结合律:

(a+b)+c=a+(b+c)

乘法交换律:

ab=ba乘法结合律:

(ab)c=a(bc)乘法分配律:

a(b+c)=ab+ac

通过运算解决问题

(三)式与方程

用字母表示数、运算定律和计算公式

方程和等式

1、等式:

表示相等关系的式子叫等式。

2、方程:

含有未知数的等式叫方程。

3、等式和方程的关系:

所有的方程都是等式,但等式不一定是方程。

4、方程的解:

使方程左右两边相等的未知数的值,叫方程的解。

5、解方程:

求方程的解的过程,叫解方程。

列方程解应用题的一般步骤

1、弄清题意,找出未知数并用x表示。

2、找出题中数量间的相等关系,并根据等量关系列出方程。

3、解方

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1