管道应力分析资料报告和计算Word文件下载.docx
《管道应力分析资料报告和计算Word文件下载.docx》由会员分享,可在线阅读,更多相关《管道应力分析资料报告和计算Word文件下载.docx(17页珍藏版)》请在冰豆网上搜索。
2.2管道的热膨胀补偿
2.3管道柔性分析与计算的主要工作
2.4管道柔性分析与计算的基本假定
2.5补偿值的计算
2.6冷紧
2.7柔性系数与应力增加系数
2.8作用力和力矩计算的基本方法
2.9管道对设备的推力和力矩的计算
3管道的应力验算
3.1管道的设计参数
3.2钢材的许用应力
3.3管道在压下的应力验算
3.4管道在持续荷载下的应力验算
3.5管道在有偶然荷载作用时的应力验算
3.6管系热胀应力围的验算
3.7力矩和截面抗弯矩的计算
3.8应力增加系数
3.9应力分析和计算软件
火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;
判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的围。
管道的热胀应力应按冷、热态的应力围验算。
管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。
(1)DL/T5366-2006火力发电厂汽水管道应力计算技术规程
(2)ASMEB31.1-2004动力管道
在一般情况下,对国工程采用DL/T5366进行管道应力验算。
对涉外工程或顾客有要求时,采用B31.1进行管道应力验算。
管道应力分析方法分为静力分析和动力分析。
对于静荷载,例如:
管道压、自重和其他外载以及热胀、冷缩和其他位移荷载作用的应力计算,采用静力分析法。
DL/T5366和B31.1规定的应力验算属于静力分析法。
同时,它们也用简化方法计及了地震作用的影响,适用于火力发电厂管道和一般动力管道。
对于动载荷,例如:
往复脉冲载荷、强迫振动载荷、流动瞬态冲击载荷和地震载荷作用的应力计算采用动力分析法。
核电站管道和地震烈度在9度及以上地区的火力发电厂管道应力计算采用动力分析法。
管道上可能承受的荷载有:
(1)重力荷载:
包括管道自重、保温重、介质重和积雪重等;
(2)压力荷载:
包括压力和外压力;
(3)位移荷载:
包括管道热胀冷缩位移、端点附加位移、支承沉降等;
(4)风荷载;
(5)地震荷载;
(6)瞬变流动冲击荷载,如安全阀启跳或阀门的快速启闭时的压力冲击;
(7)两相流脉动荷载;
(8)压力脉动荷载,如往复压缩机往复运动所产生的压力脉动;
(9)机械振动荷载,如回转设备的简谐振动。
上述荷载根据其作用时间的长短,可以分为恒荷载和活荷载两类;
根据其作用的性质,可以分为静力荷载和动力荷载。
由于不同特征的荷载产生的应力性态及其对破坏的影响不同,因此,在应力分析与计算中也将采用与之相适应的方法。
1.5.1变形
在外力(荷载)作用下,结构的总体或构件的形状和尺寸都会发生不同程度的变化,这种形状的改变,一般称为变形。
1.5.2变形的分类
(1)按照变形的性态,可分为弹性变形和塑性变形两大类。
弹性变形:
构件或物体在外力作用下产生的变形,外力除去后能完全恢复其原有形状,不遗留外力作用过的任何痕迹,这种变形叫做弹性变形。
塑性变形:
构件或物体在外力作用下产生的变形,当外力除去后,构件或物体的形状不能复原,即遗留了外力作用下的残余变形,这种变形称为塑性变形。
(2)按照变形的形式,可分为轴向拉伸(或压缩)、弯曲、扭转和剪切变形四种基本形式。
拉(压)变形:
这种变形是由一对大小相等、方向相反、作用线与杆件轴线重合的外力所引起的。
在这种外力作用下,杆的长度将伸长(或缩短)。
弯曲变形:
当杆件承受与它的纵轴线垂直的荷载或纵向轴线平面的力偶作用时,杆的纵向轴线由原来的直线变成了弧线,这种变形称为弯曲变形。
剪切变形:
这种变形是杆件受到一对大小相等、方向相反、作用线相距很近的外力作用时所产生的。
它的特征是在上述外力作用下杆的两个外力作用线间的各断面将力的作用方向(垂直于杆件轴线方向)发生相对错动。
扭转变形:
杆件在受到一对大小相等、转向相反、作用面垂直于杆件轴线的力偶作用时,使杆件的任意的两个断面绕杆件轴线作相对的转动,即产生扭转变形。
1.5.3应力
在外力作用下,构件发生变形,这说明构件材料部在外力作用下变形时原子间的相对位置产生了改变,同时原子间的相互作用力(吸引力与排斥力)也发生了改变。
这种力的改变量称为力。
力是沿整个断面连续分布的,单位面积上的力强度,即应力,以“”表示。
1.5.4应变与弹性模数
(1)应变:
构件或物体受外力(荷载)作用下将产生变形,为表明变形的程度,需计算单位长度的变形,即应变,以“”表示。
(2)弹性模数:
弹性模数E,代表材料在受到拉伸(或压缩)作用时对弹性变形的抵抗能力。
当杆件长度、断面积、外力以及温度均相同的条件下,E的数值越大,杆件的轴向伸长(变形)越小。
因此,E也可说是衡量材料刚度的指标。
在弹性围,应力=弹性模数×
应变,即=E·
。
(3)泊松比:
在弹性围,横向线应变与轴向线应变之比为一常数,此常数的绝对值称为泊松比,以“”表示。
泊松比的数值,对汽水管道常用的钢材,由试验得出,在弹性状态下约在0.25至0.35之间,在实用计算中取为0.3。
但是,它随着钢材塑性变形的发展而增加,对塑性状态下可近似地取为0.5。
(4)剪切弹性模数:
表示材料在线性弹性性态时抵抗剪切变形的能力。
剪应力与剪应变也服从虎克定律。
剪切弹性模数G与弹性模数E和泊松比有以下关系:
G=,若取常用管道钢材在弹性状态下的泊松比=0.3,则剪切弹性模数G将等于。
钢材的强度特征与变形特征是用一定的强度指标与塑性指标来衡量的,这两类指标都是表示钢材力学性能(机械性能)的物理量,它们都可以通过钢材的拉伸试验来得到。
1.6.1强度极限b:
在拉伸应力-应变曲线上的最大应力点,单位为MPa。
1.6.2屈服极限S:
材料在拉伸应力超过弹性围,开始发生塑性变形时的应力。
有些材料的拉伸应力-应变曲线并不出现明显的屈服平台,即不能明确地确定其屈服点。
对此种情况,工程上规定取试样产生0.2%残余变形的应力值作为条件屈服极限,用s(0.2%)表示,单位为MPa。
1.6.3持久强度Dt:
在给定温度下,使试样经过一定时间发生蠕变断裂时的应力。
在工程上通常采用试样在设计温度下10万小时断裂时的平均值Dt表示,单位为MPa。
1.6.4蠕变极限Dt:
在给定温度下和规定的持续时间,使试样产生一定蠕变量的应力值。
工程上通常采用钢材在设计温度下,经10万小时,蠕变率为1%时的应力值,单位为MPa。
1.6.5延伸率:
试样在拉伸试验中发生破坏时,产生了百分之几的塑性伸长量,是衡量钢材拉伸试验时塑性的一个指标。
试样的原始长度,一般选择为试样直径的5倍或10倍,因此,试样有5和10值,单位为百分率(%)。
1.6.6断面收缩率ψ:
断面收缩率表明试样在拉伸试验发生破坏时,缩颈处所产生的塑性变形率,它是衡量材料塑性的另一指标,单位为百分率(%)。
1.6.7冲击功:
钢材在进行缺口冲击试验时,消耗在试样上的能量,称为冲击功,用Ak表示,单位为焦耳(J)。
消耗在试样单位截面上的冲击功,即冲击韧性(也称冲击值),用k表示,单位为J/cm2。
1.6.8硬度:
反映材料对局部塑性变形的抗力及材料的耐磨性。
硬度有三种表示方法,即布氏硬度HB、洛氏硬度HR和维氏硬度HV,其测定方法和适用围各异。
常用的材料强度理论有四种,分别是:
1.7.1第一强度理论-最大拉应力理论,其当量应力为
S=1(式1.7.1)
它认为引起材料断裂破坏的主要因素是最大拉应力。
亦即不论材料处于何种应力状态,只要最大拉应力达到材料单向拉伸断裂时的最大应力值,材料即发生断裂破坏。
1.7.2第二强度理论-最大伸长线应变理论,其当量应力为
S=1-(2+3)(式1.7.2)
它认为引起材料断裂破坏的主要因素是最大伸长线应变。
亦即不论材料处于何种应力状态,只要最大伸长线应变达到材料单向拉伸断裂时的最大应变值,材料即发生断裂破坏。
1.7.3第三强度理论-最大剪应力理论,其当量应力为
S=1-3(式1.7.3)
它认为引起材料破坏或失效的主要因素是最大剪应力。
亦即不论材料处于何种应力状态,只要最大剪应力达到材料屈服极限值,材料即发生屈服破坏。
1.7.4第四强度理论-变形能理论,其当量应力为
S=(式1.7.4)
它认为引起材料屈服破坏的主要因素是材料的变形能。
亦即不论材料处于何种应力状态,只要其部积累的变形能达到材料单向拉伸屈服时的变形能值,材料即发生屈服破坏。
在管道强度设计中,主要采用最大剪应力强度理论。
蠕变和应力松弛是金属材料在高温下的机械性能。
1.8.1蠕变是指金属在高温和应力同时作用下,应力保持不变,其非弹性变形随时间的延长而缓慢增加的现象。
高温、应力和时间是蠕变发生的三要素。
应力越大、温度越高,且在高温下停留的时间越长,则蠕变越甚。
1.8.2应力松弛是指高温下工作的金属构件,在总变形量不变的条件下,其弹性变形随着时间的延长不断转变成非弹性变形,从而引起金属中应力逐步下降并趋于一个稳定值的现象。
1.8.3蠕变和应力松弛两种现象的实质是相同时,都是高温下随时间发生的非弹性变形的积累过程。
所不同的是应力松弛是在总变形量一定的特定条件下一部分弹性变形转化为非弹性变形;
而蠕变则是在恒定应力长期作用下直接产生非弹性变形。
对于管道上的应力,一般分为一次应力、二次应力和峰值应力三类。
1.9.1一次应力
一次应力是由压力、重力与其他外力荷载的作用所产生的应力。
它是平衡外力荷载所需的应力,随外力荷载的增加而增加。
一次应力的特点是没有自限性,即当管道的塑性区域扩展达到极限状态,使之变成几何可变的机构时,即使外力荷载不再增加,管道仍将产生不可限制的塑性流动,直至破坏。
一次应力有三种类型:
一次一般薄膜应力、一次局部薄膜应力和一次弯曲应力。
(1)一次一般薄膜应力,是在所研究的截面厚度上均匀分布的,且等于该截面应力平均值的法向应力(即正应力)的分量。
如果这种应力达到屈服极限时,将引起截面整体屈服,不出现荷载的再分配。
(2)一次局部薄膜应力,是由压或其它机械荷载产生的,由于结构不连续或其它特殊情况的影响,而在管道或附件的局部区域有所增强的一次薄膜应力。
这类应力虽然具有二次应力的一些特征,但为安全计,通常划为一次应力。
(3)一次弯曲应力,是在所研究的截面上法向应力(即正应力)从平均值算起的沿厚度方向变化的分量。
这种应力达到屈服极限时,也只引起局部屈服。
在应力验算中,通常不单独评价一次弯曲应力强度。
1.9.2二次应力
二次应力是由管道变形受约束而产生的应力,它由管道热胀、冷缩、端点位移等位移荷载的作用而引起。
它不直接与外力平衡,而是为满足位移约束条件或管道自身变形的连续要求所必需的应力。
二次应力的特点是具有自限性,即局部屈服或小量变形就可以使位移约束条件或自身变形连续要求得到满足,从而变形不再继续增大。
二次应力引起的是疲劳破坏。
二次应力也有二次薄膜应力和二次弯曲应力两部分。
1.9.3峰值应力