城市地下管线测量技术方案Word文件下载.docx

上传人:b****2 文档编号:15168439 上传时间:2022-10-28 格式:DOCX 页数:33 大小:8.04MB
下载 相关 举报
城市地下管线测量技术方案Word文件下载.docx_第1页
第1页 / 共33页
城市地下管线测量技术方案Word文件下载.docx_第2页
第2页 / 共33页
城市地下管线测量技术方案Word文件下载.docx_第3页
第3页 / 共33页
城市地下管线测量技术方案Word文件下载.docx_第4页
第4页 / 共33页
城市地下管线测量技术方案Word文件下载.docx_第5页
第5页 / 共33页
点击查看更多>>
下载资源
资源描述

城市地下管线测量技术方案Word文件下载.docx

《城市地下管线测量技术方案Word文件下载.docx》由会员分享,可在线阅读,更多相关《城市地下管线测量技术方案Word文件下载.docx(33页珍藏版)》请在冰豆网上搜索。

城市地下管线测量技术方案Word文件下载.docx

工业管线可分为氢气、氧气、乙炔、石油、航油、排渣和垃圾等;

综合管沟(廊)管线可分为综合管廊和综合管沟等。

2、地下管线测量内容

地下管线测量工作分为地下管线的探查和地下管线的测量两部分。

地下管线的探查

地下管线的探查主要针对明显的线点(主要有接线箱、变压器、消防栓、入孔井、窨井等附属设施)进行。

作业时将所有窨井逐一打开,一一测量管径、走向、管道位置、深度等直接数据,并对走向判断不清的管线进行查证。

地下管线的测绘

地下管线的测量可依据第一步地下管线的探查所绘制的草图进行。

内容主要包括以下几方面:

(1)建立地下管线测量控制网,为管线点联测和管线图测绘提供基础。

(2)进行管线点联测,确定管线点的坐标与高程。

(3)内业进行管线图的绘制。

2.1、地下管线测量平面和高程控制网的建立

对于已有大比例尺地形图的地区,应充分利用原有控制点进行施测各管线特征点如果没有控制点或密度不够时,则应建立精度适宜,密度合理,点位不易被施工破坏的平面和高程控制网可采用全站仪布设光电测距导线或全球定位系统(GPS)以及水准测量的方式,按城市测量规范城市地下管线探测技术规程的要求,布设平面和高程控制点。

2.2、地下管线测量的分类特点及施测方法

地下管线测量分为两大类:

已竣工的地下管线测量和未还土的地下管线测量,未还土的地下管线测量,主要是通过直接测定管线的特征点来完成管线的测量工作。

已竣工地下管线测量是指所有管线竣工后并已还土的地下管线测量这类地下管线测量主要是通过物探的方式将管线特征点反映到地面上,然后施测各种管线特征点,再把各特征点展绘在地形图上进行编辑。

2.2.1、未还土地下管线测量的特点及施测方法

未还土地下管线测量的特点:

⑴边施工边测量,东一处西一处,没有规律,没有预见性;

⑵施工完马上就要埋上,这就要求施测准确,最好现场进行复检一次,确保数据的正确;

⑶由于是施工现场,控制点不容易保存;

⑷施工周期长,控制点必须便于保存,能反复多次使用施测前应作好收集资料的准备工作,主要是收集各种管线的设计图,合理有效地利用好设计图,有利于提高地下管线测量质量,提高作业效率。

施测方法:

⑴一般采用全站仪直接施测管道各种特征点处的外顶或内底高及平面位置

⑵在空旷地区,建筑物不太稠密的住宅区和大马路上,可采用GPSRTK测量各管道每个特征点的3维坐标。

2.2.2已竣工的地下管线测量的特点及施测方法

已竣工的地下管线测量的作业程序是:

先用物探方法在实地探查出各管线的类别管径或断面管(沟)内底高管外顶高等项目,并且把各特征点在实地标出,然后用全站仪或RTK测定各特征点的三维坐标,再用成图软件把采集的数据展绘在地形图上进行编辑。

⑴已竣工的地下管线测量的特点:

①管线的特征点全部埋在地下,需要用物探的方法将特征点的数据反映到地面上来,同时查明地下管线的平面位置走向埋深及其他各项属性然后对各管线的特征点进行施测和制作专业管线图或综合管线图。

②管线特征点的密度大数量多,并且多种管线平行交叉给探测增加很大的难度,而且在施测过程中由于距离太近造成点号混乱等。

③工作周期长工作量大,给多组作业的衔接带来难度,已竣工的地下管线测量的外业工作主要包括管线探查和管线特征点的测量这两道工序而管线特征点的测量必须在探查工作完成后才能进行,这样一来,对整个工程的进度将会有一定的影响。

④由于管线是埋在地下,所以在物探时容易探漏。

⑤管线点的探测精度要求较高按照城市地下管线探测技术规程对管线特征点测量精度的要求,管线点的解析坐标中误差(指测点相对邻近解析控制点)不大于5cm,高程中误差(指测点相对于邻近高程控制点)不大于2cm地下管线图上测量点位中误差不得大于图上0.5mm。

⑵金属地下管线的确定

金属地下管线的确定,常用的方法是用金属探测仪进行探测探测时,仪器由发射机和接收机两部分组成,发射机是一个震荡器,经由发射线圈向空间发射高频率信号,经过接收机的检波放大,可以转换成音响和仪表指示等形式表示出来当接收机线圈偏离中心线时,声音变小,由此可确定地下金属管线的走向和填埋深度

⑶影响地下管线探查质量的因素:

影响地下管线探查质量的因素一般包括人员机具方法和环境等四个方面:

①人的因素人是地下管线探查工作的主体,探查质量的形成受到所有参加工程项目施工的探查台组的共同作用,他们是形成工程质量的主要因素,只有从事地下管线探查的人具备其工作岗位所需要的能力,其工作成果才可能满足工程质量要求。

②机具因素投入工程使用的探查设备应该根据现场地下管线的材质敷设方式和埋设深度进行选择,其精度指标应满足工程探测精度的要求。

③方法因素探查过程中的方法包含所采取的技术方案工艺流程组织措施探查手段施工组织设计等技术方案正确与否,直接影响工程质量控制能引顺利实现,往往由于施工方案考虑不周而拖延进度,影响质量,增加投资。

④环境因素影响探查工程质量的环境因素一般包括地电条件地面金属护拦地面交通其它电磁干扰地面平整性以及地下管线附属物保存状况的好坏等。

⑷提高探测精度的主要措施

措施有以下几个方面:

①由于探测仪器本身存在的某种不足,物探前需要进行探测仪一致性对比试验,以确定该仪器的改正系数。

②由于直埋管线的土质情况不同,对管线的探测精度有一定的影响,需要进行一定数量的开挖验证,或在能准确定深的位置进行探测验证,以确定是否需加埋深和平面位置的改正系数根据同行多年的经验,细密的潮湿土质探测效果较好,干燥的砂质土层探测效果较差,积水区和含铁量较高的土层探测效果最差。

③由于探测仪器探测效果受管道埋深的影响较大,尤其是应用感应法探测时,深埋管线能接收到的信号很弱,探测效果一般不太理想此时需要不断改变探测方式,如改变发射机的摆放姿势。

④由于管线的材质和导电性能不同,对管线的探测效果有直接影响比如金属管道和电缆可用一般的管线探测仪即可以探测,但不适用于非金属管道非金属管线一般可用地质雷达进行探测,但目前价格较为昂贵⑤地下管线中经常遇到并行管线的情况并行管线的探测方法:

由于地下管线具有排列相对密集,种类各异的特点,所以探测这类管线的主要干扰是相邻管线的影响,在探测中有时只能判断出大致有几条管线,但无法准确和有效地确定其位置和埋深,此时用根据情况,采用不同的方法来确定平行管线的平面和埋深。

⑥地下管线中还会遇到管线上下重叠的情况对于金属管道的重叠,当用电磁法探测时,由于重叠管线间的相互干扰,观测异常为上下管道的异常叠加,用电磁法可对其进行精确定位,而在定深上误差较大但是重叠管线不可能总是重叠,一般可在分叉处分别定深,推算出重叠处的管道的深度。

⑦地下管线探测的测深精度受以下因素的影响:

管线埋深与管径的比值;

接受机是否偏离管线上方;

探测点距离管线交叉点的距离等外界条件的影响,因而在跟踪定位探测过程中随时注意测深,并剔出异常深度值,取其中数作为某一段的深度值,特别注意不在管线交叉点附近测深所以,在地下管线探测过程中,探测效果受诸多因素的影响,在管线探测前,首先要考虑准确性避免出现粗差,然后再考虑选用合适的物探方法,才能取得较好的探测效果。

二、GNSS设备在管线测量中的应用

1、GNSS概述

GNSS的全称是全球导航卫星系统(GlobalNavigationSatelliteSystem),它是泛指所有的卫星导航系统,包括全球的、区域的和增强的,如美国的GPS、俄罗斯的Glonass、欧洲的Galileo、中国的北斗卫星导航系统,以及相关的增强系统,如美国的WAAS(广域增强系统)、欧洲的EGNOS(欧洲静地导航重叠系统)和日本的MSAS(多功能运输卫星增强系统)等,还涵盖在建和以后要建设的其他卫星导航系统。

1.1、四大全球导航卫星系统介绍

1、美国GPS卫星导航系统

GPS是由美国国防部研制建立的一种具有全方位、全天候、全时段、高精度的卫星导航系统,能为全球用户提供低成本、高精度的三维位置、速度和精确定时等导航信息,是卫星通信技术在导航领域的应用典范。

GPS的空间部分是由24颗卫星组成(21颗工作卫星;

3颗备用卫星),它位于距地表20200km的上空,运行周期为12h。

卫星均匀分布在6个轨道面上(每个轨道面4颗),轨道倾角为55°

卫星的分布使得在全球任何地方、任何时间都可观测到4颗以上的卫星。

如图1所示:

图1

2、俄罗斯GLONASS卫星导航系统

格洛纳斯(GLONASS)是由俄罗斯研发的卫星导航系统,由俄罗斯政府运作。

GLONASS系统由卫星、地面测控站和用户设备三部分组成。

该系统最早开发于苏联时期,后由俄罗斯继续该计划。

俄罗斯1993年开始独自建立国家的全球卫星导航系统。

该系统于2007年开始运营,当时只开放俄罗斯境内卫星定位及导航服务。

到2009年,其服务范围已经拓展到全球。

该系统主要服务内容包括确定陆地、海上及空中目标的坐标及运动速度信息等。

GLONASS星座由27颗工作星和3颗备份星组成,所以GLONASS星座共由30颗卫星组成。

27颗星均匀地分布在3个近圆形的轨道平面上,这三个轨道平面两两相隔120度,每个轨道面有8颗卫星,同平面内的卫星之间相隔45度,轨道高度2.36万公里,运行周期11小时15分,轨道倾角64.8度。

如图2所示:

图2

3、中国北斗卫星导航系统

北斗卫星导航系统(BeiDouNavigationSatelliteSystem-"

BDS"

)是中国自行研制的全球卫星定位与通信系统,是继美国全球卫星定位系统和俄罗斯全球卫星导航系统之后第三个成熟的卫星导航系统。

系统由空间端、地面端和用户端组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度优于20m,授时精度优于100ns。

2012年12月27日,北斗系统空间信号接口控制文件正式版1.0正式公布,北斗导航业务正式对亚太地区提供无源定位、导航、授时服务。

北斗卫星导航系统由空间段计划由35颗卫星组成,包括5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步轨道卫星。

5颗静止轨道卫星定点位置为东经58.75°

、80°

、110.5°

、140°

、160°

,中地球轨道卫星运行在3个轨道面上,轨道面之间为相隔120°

均匀分布。

如图3所示:

图3

4、欧盟伽利略卫星导航系统

伽利略卫星导航系统(Galileosatellitenavigationsystem),是由欧盟研制和建立的全球卫星导航定位系统,该计划于1999年2月由欧洲委员会公布,欧洲委员会和欧空局共同负责。

系统由轨道高度为23616km的30颗卫星组成,其中27颗工作星,3颗备份星。

卫星轨道高度约2.4万公里,位于3个倾角为56度的轨道平面内。

2012年10月,伽利略全球卫星导航系统第二批两颗卫星成功发射升空,太空中已有的4颗正式的伽利略系统卫星,可以组成网络,初步发挥地面精确定位的功能。

由于欧盟多

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 司法考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1